

Coding in yscript
A description of the yscript language

Andrew Mowbray
Australasian Legal Information Institute

Coding with yscript – A description of the yscript language

© Copyright 2021 Andrew Mowbray

Andrew Mowbray is Professor of Law and Information Technology, University of Technology Sydney and
Co-Director, AustLII

Australasian Legal Information Institute (AustLII) Level 14, 61 Broadway
Ultimo NSW 2007 Australia

Tel: +61 2 9514 4918
Email: andrew@austlii.edu.au
Web: http://www.austlii.edu.au/

AustLII is a joint facility of UTS and UNSW Faculties of Law.

Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. Copyrights for third-party components of this work must be
honoured. For all other uses, contact the owner/author.

TABLE OF CONTENTS
CHAPTER 1: INTRODUCTION ... 11

CHAPTER 2: GETTING STARTED ... 15

2.1 HELLO RAINY WORLD ... 15
2.2 ADDING MORE RULES ... 16
2.3 A SLIGHTLY MORE LEGAL EXAMPLE .. 17
2.4 RULES AS CODE .. 18
2.5 REVIEW .. 21

CHAPTER 3: SYNTAX, TYPES, CONSTANTS AND EXPRESSIONS .. 23

3.1 KEYWORDS AND DESCRIPTORS .. 23
3.2 ESCAPE SEQUENCES .. 24
3.3 COMMENTS .. 24
3.4 CODE SYNTAX AND STRUCTURE ... 25
3.5 TYPES AND CONSTANTS ... 26

Date Constants ... 28
Time Constants .. 28

3.6 NUMBER FORMATS .. 29
3.7 CURRENCIES AND UNITS OF MEASUREMENT .. 29

Metric Base Units ... 30
Non-Metric Base Units ... 31
Referring to a Unit ... 31
Metric Prefixes ... 31
Composite Units .. 32
Currency Units ... 33

3.8 EXPRESSIONS ... 33
Logical Operators .. 34
Relative Operators ... 34
Some examples: ... 35
Arithmetic Operators .. 35
Unary Operators .. 36
Date Arithmetic and Comparison ... 37
Time Arithmetic and Comparison .. 38
Expressions Involving Numerical Units .. 39

CHAPTER 4: FACTS .. 41

4.1 FACT DECLARATIONS ... 41
4.2 PROPOSITIONS ... 42
4.3 DEALING WITH GRAMMATICAL ERRORS .. 44
4.4 NON-BOOLEAN FACTS ... 45
4.5 CURRENCIES AND UNITS OF MEASURE .. 45
4.6 TIME ZONES .. 46
4.7 STYLES ... 47

Numerical Styles ... 47
Calendar Years ... 48

Coding in yscript Contents

iv

Time Style Formats ... 48
Date Style Formats .. 49

4.8 DEFAULT STYLES, NUMBERING AND UNITS .. 49
4.9 CERTAINTY .. 50
4.10 RANGES ... 50

Continuous Ranges ... 50
Discrete Ranges ... 50
Range Errors ... 51

4.11 PROMPTS AND TRANSLATIONS .. 51
4.12 NAMED SUBJECTS ... 53

Named subject declarations ... 53
Related Facts .. 53
Named Subject Declaration Modifiers ... 55

4.13 EMBEDDED FACTS .. 56
4.14 EXPLANATIONS .. 56
4.15 INFORMATION ... 57
4.16 ATTACHMENTS .. 58
4.17 ALIASES .. 58
4.18 CONTEXT .. 58

Context Declaration .. 58
Namespace ... 59
Rule and Procedure References ... 61

CHAPTER 5: STATEMENTS ... 63

5.1 ASSIGNMENTS AND ASSERTIONS .. 63
Assertions ... 63
Regular Assignments .. 63

5.2 IF-THEN-ELSE STATEMENT .. 64
5.3 CASE-WHEN STATEMENT .. 64
5.4 WHILE-DO STATEMENT ... 65
5.5 REPEAT-UNTIL STATEMENT ... 66
5.6 CALL / SUBRULE STATEMENT .. 66
5.7 NEXT STATEMENT ... 67
5.8 DETERMINE STATEMENT .. 67
5.9 FORGET STATEMENT ... 68
5.10 SAY STATEMENT .. 68
5.11 EXIT STATEMENT ... 69
5.12 INCLUDE DIRECTIVE .. 70

CHAPTER 6: RULES .. 71

6.1 DEFAULT RULE BEHAVIOUR .. 71
6.2 RULE DECLARATIONS AND TYPES ... 71

Backward Rules ... 72
Forward Rules .. 72
Daemons ... 72
Procedures .. 72

 Contents v

Document Rules .. 72
6.3 GOAL RULES .. 72
6.4 REPORTS .. 73
6.5 RULE ORDER ... 74
6.6 GENERIC RULES .. 74
6.7 WRITING PROCEDURAL CODE ... 75
6.8 RULES AS OBJECTS .. 78

CHAPTER 7: EXAMPLES ... 81

7.1 EXAMPLE DECLARATIONS ... 81
7.2 EXAMPLE EVALUATION .. 81
7.3 FINDERS EXAMPLE .. 82

CHAPTER 8: DOCUMENT ASSEMBLY .. 87

8.1 DOCUMENTS ... 87
8.2 MARKDOWN ... 91
8.3 INCLUDING MARKDOWN TEXT IN YSCRIPT CODE ... 92
8.4 SUGGESTED MARKDOWN ELEMENTS .. 94

Paragraphs .. 94
Lines .. 94
Bold and Italics .. 94
Headings ... 94
Numbered Lists ... 95
Unnumbered Lists ... 95
Horizontal Rules .. 95
Blockquotes .. 96
Code Blocks .. 96
Links .. 96
Images ... 96

8.5 TEMPLATES ... 97
8.6 ATTACHMENTS .. 97
8.7 ALIASES .. 98
8.8 TEMPLATING LANGUAGES AND FORMATS .. 98

DataLex ... 98
Jinja2 .. 98

CHAPTER 9: STYLE GUIDE .. 101

Simplicity .. 101
Isomorphism .. 101
Small rules .. 101
Fact Names ... 101
Rule Types .. 101
Declarative Representation .. 102
Comments .. 102
Context .. 102

APPENDIX 1: UNITS, CURRENCIES AND TIME ZONES ... 103

9.1 NUMERICAL UNITS ... 103

Coding in yscript Contents

vi

9.2 DERIVED UNITS .. 104
9.3 UNIT SYNONYMS .. 105
9.4 CURRENCY UNITS ... 106
9.5 TIME ZONE STYLES ... 108
9.6 TIME ZONE COUNTRY NAMES ... 111

APPENDIX 2: THE CYSCRIPT INTERPRETER .. 113

1. USAGE ... 113
Available Flags .. 113
Code Reformatting .. 115
Statistics .. 116
Translations .. 116
Cross-referencing .. 117
Return Code ... 118

2. INTERACTIVE SESSIONS .. 118
Selecting a Goal ... 118
Questions and Prompts .. 118
Uncertain Responses ... 120
What If? ... 120
Why? ... 121
What? .. 122
So? .. 123
How ... 123
Forget .. 124
Goals .. 124
Rules .. 125
Verbose Mode .. 126
Load and Save .. 127

3. ERROR AND WARNING MESSAGES ... 127
Parsing Errors .. 127
Session Errors ... 134
Verbose Messages ... 135
Fatal Errors ... 137

APPENDIX 3: YSCRIPT 2.X LANGUAGE CHANGES ... 139

Context [4.18] ... 139
Embedded Facts [4.13] .. 139
Markdown [8.2] ... 140
Attachments [8.6] .. 140
Named Subjects [4.15] ... 140
New Type Names [3.5] ... 141
Currencies and Units of Measurement [3.7] .. 141
New Fact Qualifiers [0] ... 142
Explanations [4.14] .. 142
CASE-WHEN-THEN Statement [5.3] ... 142
Objects [6.8] .. 142
New Assignment Syntax [5.1] ... 143

 Contents vii

FORGET Statement [5.9] .. 144
EXIT Statement [5.11] ... 144
SAY Statement [5.10] ... 144
INCLUDE Directive [5.12] ... 144
Comments [3.3] .. 144
Ranges [4.10] .. 144
Facts [4.3] .. 145
SUBRULE Alternative to CALL [5.6] ... 145
VERBS Generally Unnecessary [4.3] ... 145
LISTED and UNLISTED Deprecated [6.3] ... 145
Lexical Changes ... 146
DataLex Declarations .. 146
Interactive Commands ... 146

APPENDIX 4: FORMAL GRAMMAR .. 147

APPENDIX 5: THE YSCRIPT API .. 149

Fundamental Routines ... 149
Alphabetical List of API Calls ... 150
API Constants .. 154
C / C++ API Example .. 154
Perl API Example .. 155
Python API Example ... 155
Ruby API Example .. 156

APPENDIX 6: USING CYSCRIPT AS A SERVER ... 157

1. INVOCATION ... 157
2. COMMANDS ... 157
3. OUTPUT .. 157
5. DETAILED OBJECT DESCRIPTION .. 160

attachments .. 160
conclusions ... 160
document .. 161
error ... 161
explanation ... 161
fact ... 161
file .. 162
goals .. 162
help .. 162
how .. 162
multi .. 163
premises .. 163
question ... 163
report ... 164
rule ... 164
rules ... 164
template .. 165
verbose .. 165
whatif .. 165

Coding in yscript Contents

viii

why .. 166

APPENDIX 7: YSCRIPT CODE EXAMPLES .. 167

1. COMMONWEALTH CONSTITUTION S44 .. 167
2. MODERN SLAVERY ACT 2018 (CTH) ... 171
3. COMMUNITY GAMING REGULATIONS 2020 (NSW) ... 187

 Contents ix

TABLE OF FIGURES
Figure 1 - List of Keywords .. 23
Figure 2 – Character Escape Sequences .. 24
Figure 3 - Types and Constants ... 27
Figure 4 - Common Date Formats ... 28
Figure 5 - Common Time Formats .. 29
Figure 6 - Number Formats .. 29
Figure 7 - Example Units .. 30
Figure 8 –Metric Base Units ... 30
Figure 9 – US, Imperial and other Units .. 31
Figure 10 - Metric Prefixes ... 32
Figure 11 - Composite Units .. 32
Figure 12 - Generic Currencies .. 33
Figure 13 - Operator Precedence ... 33
Figure 14 - Logical Operators .. 34
Figure 15 - Relative Operators ... 35
Figure 16 - Arithmetic Operators .. 36
Figure 17 – Pre-Unary Operators .. 36
Figure 18 – Post-Unary Operators .. 37
Figure 19 - List of Auxiliary Verbs .. 43
Figure 20 – Numerical Styles ... 47
Figure 21 - Calendar Year Styles ... 48
Figure 22 – Time Styles ... 48
Figure 23 - Date Styles .. 49
Figure 24 - Default Styles, Numbering and Units .. 49
Figure 25 – Numerical Units .. 103
Figure 26 - Derived Units ... 104
Figure 27 - Unit Synonyms ... 105
Figure 28 - Currency Units ... 107
Figure 29 - Time Zones ... 110
Figure 30 - Time Zone Country Names .. 112

Coding in yscript Contents

x

Chapter 1: Introduction

yscript1 (pronounced ‘why-script’) is a computer language for representing and
manipulating propositions. It can be used to represent real-world rules such as
legislation or codes of practice, as well as to create systems based around less formally
defined procedures or knowledge.

When yscript code is executed, it results in a dialog or consultation. A series of
questions are asked, and conclusions are made. Along the way, the user can
interrogate the system as to why questions are being asked, to explain how
conclusions have been reached and to check hypotheticals. When a session completes,
a report is generated to give an answer to the original goals and to explain why this is
the case.

The core language has been stable for a long time.2 From the outset, one of the central
aims was to develop a form of representation that looked as much like natural
language as possible. The language syntax manages to almost entirely avoid the use
of symbols which are the principle structural elements of most programming
languages. This was done partly to make it easier to write code for non-programmers,
but also to make the code more transparent. Even if you can’t write code in yscript,
you can probably understand what it is doing and possibly even comment upon
whether it accurately encapsulates anything from the real world that it is meant to
reflect.

In formal terms, yscript code consists of rules that deal with facts. Facts are expressed
in their plain English-language form. Individual rules are imperative but often just
declare relationships between facts. Once a rule is being evaluated, other rules that
can help determine a value for required facts are automatically executed in a goal-
oriented fashion. Each time that a new fact becomes known, rules are used to check if
other fact values can be derived. When required, rules can be specifically called like
procedures or functions in other languages.

yscript also supports examples3. An example is a set of propositions supporting a
particular outcome. This was implemented in yscript to deal with case-based
reasoning in law but probably has application in other fields. Finally, yscript
applications can generate documents. A document is built procedurally but can take

1 The yscript language was originally developed for the expert systems shell ysh. Prior to being integrated into
AustLII’s DataLex platform, yscript was also used as the language and code interpreter for a system called wysh
(short for “web-ysh”). For a history of the project see Greenleaf, Mowbray & Chung, ‘Building Sustainable Free
Legal Advisory Systems: Experiences from the History of AI & Law’ (2018) 34(1) Computer Law & Security Review
324
2 The language has been substantially extended since inception, but the core elements have remained the same
and, with very few minor exceptions code written for the earliest versions of yscript will still run under the current
interpreter. A summary of changes between ysh version 1.x and yscript 2.1x are set out in Appendix 3 at page 139.
3 The yscript library uses an analogous reasoning approach developed by Alan Tyree called PANNDA. This is
described in his book Tyree, A, Expert Systems in Law, Prentice Hall, 1990.

Coding with yscript Chapter 1 12

advantage of rule-based determination of necessary facts. Document assembly can
also use external templates.

One of the advantages of using a quasi-natural language form of coding is that it is
often possible to directly adopt the wording of a set of rules that you are trying to
represent. This is particularly useful in the legal domain, where it is desirable to use
language taken from statutes and regulations. In legal documents, the exact form of
words often matters. Specific words and phrases can imply underlying complex
meaning or act as a point of reference to a body of interpretative documents and
decisions which need to be considered.

The rule-based structure of yscript encourages and supports isomorphism (that is, one-
to-mapping) of real-word rules into yscript code. This makes it a lot easier to build
applications, but more importantly it allows for simpler maintenance of the code as
source legislation or other rules change.

yscript can be used directly via the cyscript command-line interpreter or it can be
embedded in larger systems and applications. A major environment that uses yscript
is AustLII’s DataLex platform. This uses yscript to answer legal problems within the
AustLII web-based environment and provides links to and from yscript dialogs to
primary and secondary legal materials that provide support and explanation. For
other applications, yscript provides a library with as associated API that supports
most programming languages including C, C++, Python, Ruby, and Perl.

The structure of the rest of this guide is as follows:

Chapter 2 gives a quick tutorial introduction designed to provide you with enough
information to start writing code. Whilst yscript provides many features, you should
be able to do 90% of the things you need to do with 10% of the language. It is possible
to build quite large and sophisticated applications with little more information than is
contained in the tutorial.

The following chapters describe the language in detail and are also meant to serve as
a reference source.

Chapter 3 is a technical chapter describing the core elements of the language. It
discusses the basic syntax, data types, constants and expressions and contains several
tables enumerating fundamental language elements.

Chapter 4 deals with facts. At one level, facts are like variables in other languages. In
yscript, however, facts are also the principal way in which an application
communicates with the user. This chapter deals with how fact names are transformed
into questions and statements and how you can change this if necessary. The chapter
also deals with the use of context. This is important when building larger or
collaborative applications which need to be divided into separate and independent
parts.

Chapter 5 discusses statements. Most of the statements that are used in typical yscript
code are just assignments and IF-THEN-ELSE statements. Whilst it is probably not

Chapter 1 Introduction 13

desirable if you are trying to write reusable declarative code, yscript also supports
most of the basic statement constructs that can be found in conventional languages.

Chapter 6 is all about rules. Rules are generally invoked in a goal-driven (backward
chaining) way. In some circumstances, it is necessary to use rules differently. Other
types of rules such as forward rules, daemons, and procedures are discussed. This
chapter also describes how rules can be declared as goals.

Chapter 7 introduces examples. Examples are used to support analogous reasoning in
yscript. They were mainly introduced to deal with handling the application of legal
case-based reasoning but can be used more generally.

Chapter 8 describes the document assembly facilities available. Document assembly is
imperative by its nature but can make use of rules to determine surrounding issues
and which parts of a document need to be created.

The final chapter – Chapter 9, makes various suggestions for how to write good yscript
code. Some of the principles that are suggested are quite straight-forward (such as not
using a yscript feature just because it is there) but are based on experience with building
applications and teaching others to do so and are intended to be practical.

The appendices contain a detailed description of available units of measurement and
currencies, the interactive command line environment – cyscript, a summary of recent
changes to language features, a formal description of the yscript grammar, a
description of the interpreter library API, a guide to using cyscript as a server and
several extended examples.

Coding with yscript Chapter 1 14

Chapter 2: Getting Started

This chapter provides a quick tutorial introduction to using yscript. It is designed to
present the essential elements of the language in a practical way. Most of the details
are skipped in favour of giving enough information to start writing useful
applications. All examples are complete pieces of code and can be run as is or modified
to allow you to play with the language and to become comfortable with it.

2.1 Hello Rainy World

yscript code consists of a set of declarations of rules and facts. When evaluated,
execution begins by firing a rule and generally proceeds by using other rules to
determine the values of facts as they are needed.

Consider the following code:4

RULE PROVIDES
you should take an umbrella ONLY IF it is raining

The first thing you will notice is that some of the words (“RULE PROVIDES” and “ONLY IF”)
are in upper case. These are reserved words or keywords and are used to provide
structure. Other phrases are in lower case, such as “you should take an umbrella” and
“it is raining”. These are English language5 propositions or facts. Facts do not
necessarily have to be propositional and can have others sorts of values, but we will
leave discussing this until later.

The meaning of the rule is meant to be transparent, namely that it will be determined
that you should take an umbrella if it is raining, and it will be concluded that you
should not take an umbrella if it is not. The ONLY IF operator indicates a propositional
(or boolean) assignment.

When evaluated, the yscript interpreter will execute (fire) the rule and attempt to
assign the value of the fact “it is raining” to the fact “you should take an umbrella”.
Because there is no other rule that can help to determine a value for “it is raining”, the
system will ask the user. If the user answers “yes” then it will be determined that “you
should take an umbrella”, otherwise it will be concluded that “you should not take an
umbrella”. If the user answers “unknown”, it will be concluded that “it is uncertain
whether or not you should take an umbrella”.

4 The umbrella code is the equivalent of the “Hello, World” example that starts most computer language tutorials.
It is not a very “yscript” sort of thing to want to do, but if you did want to write code to output “Hello, World”, you
would write: RULE PROVIDES SAY "Hello, World".
5 It is possible at some stage in the future that yscript may be adapted to work in other languages, but for the
moment proposition transformations will only work in English.

Coding with yscript Chapter 2 16

yscript code is contained in one or more files, that usually have the suffix - .ys. Most
legal users will be using yscript as part of the DataLex platform6 (see
http://datalex.org/dev/tools/>7), but if you are running it from the standard
distribution under Unix or Linux, code is interpreted by the ys command line
interpreter - cyscript.8 Assuming the above code was saved in a file called - “rain.ys”,
the user session might go something like:

% ys rain.ys

Is it raining?
** why

This will help determine whether or not you should take an umbrella.

Is it raining?
** no

You should not take an umbrella because it is not raining.

In the dialog that occurs during the above session, facts are automatically turned into
questions and expressed in the positive and negative form as necessary. Explanations
for conclusions are also built automatically, as are explanations for “why” questions
are being considered (so-called explication). The use of natural language propositions
and descriptions for both identifying facts and for generating interaction with an
application’s user is one of yscript’s distinguishing features. It is designed to make
applications quick to build and easy to maintain.

2.2 Adding More Rules

The example can be expanded by adding additional rules and by using expressions to
create more complicated propositions using logical operators as follows:

RULE PROVIDES
you should take and umbrella ONLY IF
 you have an umbrella AND
 you might need an umbrella

RULE PROVIDES
you might need an umbrella ONLY IF
 it is raining OR
 it looks like it might rain

RULE PROVIDES
it is raining ONLY IF
 water is falling from the sky

6 DataLex is a legal applications development environment which is available on AustLII (see
http://www.datalex.org/). It incorporates yscript in a system that integrates it with the primary and secondary
legal materials on AustLII and facilitates cooperative code development.
7 If you just want to test and run yscript code, skip the first section (“Import legislation section”) and just type your
code into the second box “Edit DataLex Code-base” and “Run consultation”.
8 The yscript standard distribution also includes a C-library API with examples of how to call this from C, C++,
Python, Ruby, and Perl. It is also possible to run cyscript as a server on a Unix socket. See Appendices 5 and 6.

Chapter 2 Getting Started 17

When more than one rule is present, by default execution begins with the first rule
and the following interaction will result:

Do you have an umbrella?
** yes

Is water falling from the sky?
** no

Does it look like it might rain?
** yes

You should take an umbrella because you have an umbrella and
you might need an umbrella. You might need an umbrella because
it looks like it might rain.

2.3 A Slightly More Legal Example

As was said in the introduction, the main application of yscript has been to build
applications in the legal domain, so let’s now consider a slightly more legal example:

PERSON the client
PERSON the defendant

RULE Litigation Basics PROVIDES
the client should sue the defendant ONLY IF
 the client has a good cause of action AND
 the defendant has the capacity to pay damages

RULE Consequences of Insolvency PROVIDES
IF the defendant is insolvent THEN
 the defendant does not have the capacity to pay damages

This example introduces a few more elements of the yscript language. The first thing
that is different is that the rules have names: “Litigation Basics” and “Consequences
of Insolvency”. Rule names are generally optional,9 but it is good practice to include
them as rule names provide documentation as to what a rule does and perhaps what
it is based on. These descriptions can be used to describe the hierarchy of rules under
consideration and for selecting goal rules for sessions.

The first rule uses the same sort of ONLY IF statement that has been used in the previous
two examples. The second rule introduces the “IF-THEN”10 statement. This statement
allows you to specify that some conclusion should be made (in the case “the defendant
does not have the capacity to pay damages”) if some premise (“the defendant is
insolvent”) is true. If the premise is not true, then no conclusion will be made.

The code starts with the declarations “PERSON the client” and “PERSON the defendant”.
These statements declare the named subjects – “the client” and “the defendant”. A

9 Rules must be named if you specifically want to invoke them with the CALL statement or if they are to be used as
GOALS. Rule names are also used by the verbose tracking facility.
10 As we will see later, you can follow an IF-THEN with an ELSE clause as is the case for most programming
languages. You can also nest IF-THEN-ELSE statements and specify that they should apply to more than one
statement by using BEGIN-END blocks. See § 5.2 at page 64.

Coding with yscript Chapter 2 18

named subject is a string that forms part of the description (name) of other facts. In the
example, both “the client” and “the defendant” appear as part of the fact “the client
should sue the defendant”. These named subjects will be replaced by a name or an
appropriate pronoun when the fact is used in a question or explanation. Other types
of named subjects include THINGs (i.e., something that has a name but is inanimate like
a company or a place) and PERSON-THINGs (i.e., an entity that can be animate or
inanimate).11

When executed, the session goes:

 1) What is the name of the client?
 ** Maryanne Smithers

 2) What is Maryanne Smithers's preferred gender?
 ** female

 3) What is Maryanne Smithers's preferred form of address?
 ** Professor Smithers

 4) What is the name of the defendant?
 ** George Dobinson

 5) What is George Dobinson's preferred gender?
 ** male

 6) What is George Dobinson's preferred form of address?
 ** Dr

 7) Does Professor Smithers have a good cause of action?
 ** yes

 8) Is Dr Dobinson insolvent?
 ** no

 9) Does he have the capacity to pay damages?
 ** yes

 Professor Smithers should sue Dr Dobinson because she has
 a good cause of action and Dr Dobinson has the capacity
 to pay damages.

2.4 Rules as Code

The most common application of yscript has been to represent legislation, regulations,
and formal rules (Rules as Code12 or RaC). Using the elements introduced so far in this
tutorial, it is possible to represent the provisions of most forms of legislative text.
Because we generally want to be as legally correct as possible, it is generally desirable
to use the exact language from source legislation as yscript facts. It is also good practice
to map the structure and organisation of legislation to rules to make code easier to
maintain and to facilitate better explanations.

11 In the example, “the client” and “the defendant” probably should really be of type PERSON-THING as both parties
could potentially be corporations or unincorporated associations.
12 For a discussion of Rules as Code generally, see J Mohun and A Roberts, “Cracking the code: Rulemaking for
humans and machines”, OECD Working Papers on Public Governance, No. 42, OECD Publishing, Paris 2020.

Chapter 2 Getting Started 19

Consider the following section from NSW Crimes Act 1900 which deals with “Setting
trap etc”:

Setting trap etc
49 SETTING TRAP ETC
(1) Any person who--
(a) places or sets, or causes to be placed or set, any trap, device or thing

(whether its nature be electronic, electric, mechanical, chemical or
otherwise) capable of destroying human life or inflicting grievous bodily
harm on any person, or

(b) knowingly permits any such trap, device or thing to continue to be placed
or set,
with intent to inflict grievous bodily harm shall be liable to imprisonment
for five years.

(2) Nothing in subsection (1) shall extend to any gin or trap, placed with the
intention of destroying vermin, or to any trap, device or thing placed in
a dwelling-house for the protection thereof.

To represent this in yscript, we should reflect that the overall structure of the section
has two subsections (1) and (2) and subsection (1) has two sub-subsections (a) and (b).
We should also try to keep as much of the language as we can, but we will need to
make some judgment calls about how requirements should be broken up and what
the overall outcome of each yscript rule should be.

The main purpose of the section is to provide for an offence of “setting a trap” with a
penalty of imprisonment for five years where either subsections (1)(a) or (1)(b) apply
and where subsection (2) does not. The opening rules might go something like:

RULE Crimes Act 1900 Section 49 PROVIDES
the defendant has committed an offence under section 49 ONLY IF
 section 49(1) applies AND
 section 49(2) does not apply

RULE Crimes Act 1900 Section 49(1) PROVIDES
section 49(1) applies ONLY IF
 section 49(1)(a) applies AND/OR
 section 49(1)(b) applies AND
 the defendant had the intent to inflict grievous bodily harm

Note that we have had to introduce a new operator - AND/OR. This is the same as an OR,
but it has higher precedence (that is, it binds more tightly) than AND, so that either (a)
or (b) must apply, as well as the defendant having intent to inflict grievous bodily
harm.

If we ran this code, it would go:

 1) Does section 49(1)(a) apply?
 ** yes

 2) Did the defendant have the intent to inflict grievous bodily harm?
 ** yes

 3) Does section 49(2) apply?
 ** no

 The defendant has committed an offence under section 49 because section

49(1) applies and section 49(2) does not apply. Section 49(1) applies
because section 49(1)(a) applies and the defendant had the intent to inflict
grievous bodily harm.

Coding with yscript Chapter 2 20

To complete the section translation and make the application more useful, we could
add:

PERSON the defendant

RULE Crimes Act 1900 Section 49 PROVIDES
the defendant has committed an offence under section 49 ONLY IF
 section 49(1) applies AND
 section 49(2) does not apply

RULE Crimes Act 1900 Section 49(1) PROVIDES
section 49(1) applies ONLY IF
 section 49(1)(a) applies AND/OR
 section 49(1)(b) applies AND
 the defendant had the intent to inflict grievous bodily harm

RULE Crimes Act 1900 Section 49(1)(a) PROVIDES
section 49(1)(a) applies ONLY IF
 the defendant placed or set a trap, device or thing AND/OR
 the defendant caused a trap, device or thing to be placed or
 set AND
 the trap, device or thing was capable of destroying human
 life AND/OR
 the trap, device or thing was capable of inflicting grievous
 bodily harm on any person

RULE Crimes Act 1900 Section 49(1)(b) PROVIDES
section 49(1)(b) applies ONLY IF
 the defendant knowingly permitted a trap, device or thing to
 continue to be placed or set AND
 the trap, device or thing was capable of destroying human life
 or inflicting grievous bodily harm on any person

RULE Crimes Act 1900 Section 49(2) PROVIDES
section 49(2) applies ONLY IF
 the trap was placed with the intention of destroying vermin OR
 the trap was placed in a dwelling house to protect against
 vermin

One of the interesting features of the example is the amount of statutory interpretation
involved in making the statute work as code. In section 49(2), for example, we have
had to require that the exception for traps relating to protection of dwelling houses
only operates in the context of vermin.

When run, the session might go:

 1) What is the name of the defendant?
 ** Howard Jones

 2) What is Howard Jones's preferred gender?
 ** male

 3) What is Howard Jones's preferred form of address?
 ** Mr Jones

 4) Did Mr Jones place or set a trap, device or thing?
 ** no

 5) Did he cause a trap, device or thing to be placed or set?
 ** no

 6) Did he knowingly permit a trap, device or thing to continue to

Chapter 2 Getting Started 21

 be placed or set?
 ** yes

 7) Was the trap, device or thing capable of destroying human life
 or inflicting grievous bodily harm on any person?
 ** yes

 8) Did Mr Jones have the intent to inflict grievous bodily harm?
 ** yes

 9) Was the trap placed with the intention of destroying vermin?
 ** no

 10) Was the trap placed in a dwelling house to protect against
 vermin?
 ** no

 Mr Jones has committed an offence under section 49 because
 section 49(1) applies and section 49(2) does not apply.

 Section 49(1) applies because section 49(1)(b) applies and
 Mr Jones had the intent to inflict grievous bodily harm.

 Section 49(1)(b) applies because Mr Jones knowingly
 permitted a trap, device or thing to continue to be placed
 or set and the trap, device or thing was capable of
 destroying human life or inflicting grievous bodily harm on
 any person.

 Section 49(2) does not apply because the trap was not placed
 with the intention of destroying vermin and the trap was not
 placed in a dwelling house to protect against vermin.

2.5 Review

Reviewing the information covered in this chapter in half a page, yscript code consists
of rules which often have the form:

RULE rule-name PROVIDES
some conclusion is reached ONLY IF
 some premise applies AND
 some other premise applies

or sometimes:

RULE rule-name PROVIDES
IF some premise applies THEN
 some conclusion is reached

You can create more complicated conditions by replacing AND with the OR operator or
the AND/OR operator.

Named subjects can be introduced with the keywords PERSON, THING and PERSON-THING as
in:

PERSON description of person’s role
THING description of non-person subject
PERSON-THING description of a subject that is animate or inanimate

Coding with yscript Chapter 2 22

If you have followed up until now, you should now be able to write yscript code and
be able to create quite large and sophisticated applications. You can probably put off
reading the rest of this manual until you have had the chance to experiment.

Chapter 3: Syntax, Types, Constants
and Expressions

This chapter describes yscript syntax, the basic data types that it supports and
expressions that can be used to combine constants and facts. The content includes a
formal description of the fundamental elements of language, so you might just want
to skim through it and use it as a reference source.

3.1 Keywords and Descriptors

The syntax of yscript code is different from most computer languages in that it makes
very limited use of non-alphanumeric symbols. Generally, characters such as ‘=’, ‘+’
or ‘&’ have no special meaning.13 The code consists of keywords and descriptors. A
keyword is a reserved term that is always written in upper case. The full list14 of
keywords is:

ALIAS ALL AND AND/OR AND/OR/WITH AND/WITH
AS ASSERT ATTACH AUTHORITY BACKWARD BEGIN
BOOLEAN BY CALL CASE CONTEXT DAEMON
DATE DAY DAYS DEFAULT DEFINITE DETERMINE
DISPLAYED DIVIDED DO DOCUMENT DOLLAR DOLLARS
ELSE END END-SECTION EQUAL EQUALS EXAMPLE
EXIT EXPLAIN FACT FOR FORGET FORMAL
FORWARD FROM GENDER GENDER-NEUTRAL GENDERNEUTRAL GOAL
GREATER GREATEREQUAL HOUR HOURS IF IN
INCLUDE INFO INFORMAL INTEGER IS LESS
LESSEQUAL LEVEL LINE LINK LISTED MATCH
MATCHES MINUS MINUTE MINUTES MOD MONEY
MONTH MONTHS NEXT NOT NUMBER NUMBER
NUMBERED ONLY OR OR/WITH ORDER PARAGRAPH
PERSON PERSON-THING PERSONTHING PLUS PROCEDURE PROMPT
PROVIDES RANGE REPEAT REPORT RULE SAY
SECOND SECONDS SECTION SESSION SEX STRING
STYLE SUB-RULE SUBRULE SYSTEM TEMPLATE TEXT
THAN THEN THING TIME TIMES TO
TRANSLATE UNCERTAIN UNIT UNKNOWN UNLISTED UNNAMED
UNREPORTED UNTIL VERB VERBS WEEK WEEKS
WHEN WHILE YEAR YEARS

Figure 1 - List of Keywords

A descriptor is a sequence of letters and symbols that does not include a keyword and
is used to refer to a constant, fact or text. Descriptors may include any Unicode character

13 Apart from being used in the occasional keywords (such as AND/OR, AND/OR/WITH and PERSON-THING), other places
where special characters are significant are in facts where tilde (~) is optionally used to divide a fact name into a
subject and predicate and where curly brackets ({}) are used to embed fact values or to specify generic rules and in
the VERBS declaration where pipe (|) is used to specify alternative word forms. Single and double quotes are used
to indicate string constants. Other characters such as decimal points, plus or minus signs and unit abbreviations
have special meaning within numerical constant values.
14 This list includes keywords that have been deprecated or which are used to parse DataLex declarations that are
simply passed through to the DataLex system.

Coding with yscript Chapter 3 24

in UTF-8 encoding.15 Sequences of blanks (spaces, tabs and newlines) containing more
than one newline character are treated as a single newline. All other blank sequences
are processed as though they were a single space. Upper and lower case is significant.
Code may be formatted however you wish16 but it is recommended that standard
indenting is used to indicate control flow.17 Text may optionally be enclosed in single
or double quotes.

3.2 Escape Sequences

The special meaning of a keyword and of any individual character may be escaped by
preceding it with a backslash (‘\’) character. Newlines can be included in text with the
sequence \n. For example:

\"THIS \IS A \STRING CONTAINING KEYWORDS SURROUNDED \BY QUOTES\"
this text is in \{ curly brackets \}
this is a fact the contains a real tilde - \~
this is the first line of text\nthis the second\nand this is the third

The complete list of escape sequences is:

Escape Sequence Meaning

\KEYWORD the keyword as a plain word
\n newline
\\ backslash
\~ tilde
\" double quote
\' single quote
\{ left curly bracket
\} right curly bracket
\< Left angle bracket18
\> Right angle bracket
\x any other character 'x'

Figure 2 – Character Escape Sequences

3.3 Comments

Comments are used to describe parts of the code and to indicate things that are not
obvious, limitations of the code or things that are yet to be done. Comments have no

15 Normally, non-ASCII Unicode characters are simply included in descriptors. Where such characters are
syntactically significant such as single and double quotes and non-breaking spaces in non-text blocks, these are
transliterated to ASCII form.
16 Text blocks may use Markdown formatting. See § 8.2 at page 91.
17 yscript can also be called with the -p flag which will “pretty-print” code in suggested standard format.
18 In the original version of yscript, angle brackets were used for embedded facts. To support legacy code, facts
that are enclosed in angle brackets and used or declared elsewhere in the code are still treated as embedded facts.
Apart from dealing with any problems that arise from this special case, angle brackets should not need to be
escaped.

Chapter 3 Syntax, Types, Constants and Expressions 25

effect on the meaning of the code itself or of what it does when executed or evaluated.
yscript code is intended to be transparent and so use of comments should be used
when they really have something to say rather than just repeating what anyone can
already read. yscript supports line and multi-line commenting styles.

Multi-line comments are introduced with the characters /* and finish with */. Unlike
most languages, comments nest so that you can comment out code which already
contains comments. For example:

/* this is a comment */

/*
 * so is /* this */
 */

You can also use C++ style single line // comments. For example

// this is single-line comment in C++ style
this is code // but this is a comment

3.4 Code Syntax and Structure

yscript code consists of a set of declarations of facts and rules.19 Each of these types of
declarations is dealt with in a chapter of their own below, but we have already seen
examples of each type of declaration in the previous section.

Facts are dynamically typed and only need to be formally declared if their type is not
implicit from their usage. The examples of fact declarations that have already been
used relate to a special type of facts called - named subjects which are declared as in:

PERSON the claimant
THING the destination
PERSON-THING the party

BOOLEAN facts can be associated with the values true and false.20 Other facts can have
values such as numbers, dates, or strings.

Where necessary, these can be formally declared as in:

MONEY the purchase price
INTEGER the number of properties purchased
DATE the date of purchase
STRING the name of the client

Rule declarations start with a rule type (generally just RULE), followed by an optional
name and the keyword PROVIDES, and finally one or more statements. We have already

19 As we will see later, facts and rules can also be grouped in contexts which are designed to build larger
applications. See § 4.18 on page 58. There are also several other miscellaneous declaration types including: defaults,
rule order, includes and verbs.
20 As an alternative, BOOLEAN facts can take the constant values yes and no which have the same meaning as true
and false.

Coding with yscript Chapter 3 26

considered examples of two types of statements: assignment (ONLY IF) and the
conditional IF-THEN statement. An assignment statement can take several forms, but
the simplest is the ONLY IF form where a (BOOLEAN) fact is assigned the truth value of a
fact or expression.

For example:

RULE PROVIDES
a proposition requiring two conditions is true ONLY IF
 the first condition is met AND
 the second condition is met

In this example, the value of the expression “the first condition is met AND the second
condition is met” is assigned to the fact “a proposition requiring two conditions is
true”.

The other example of a statement that we have seen is the IF-THEN statement which will
only evaluate a statement if a condition is true. For example:

RULE PROVIDES
IF the condition is true THEN
 the conclusion is true

will execute the assignment statement - ”the conclusion is true“, only if the expression
containing just the fact “the condition is true”, is true.

3.5 Types and Constants

There are eight basic types of facts and constants: boolean, currency, dates, genders,
integers, numbers and strings and times.21

Constants are used to refer to values that do not change22 such as numbers, dates, and
strings. Each constant has an associated type and will be recognised as such based on
the format of a descriptor and where it appears in the code.

21 There are also three composite types for named subjects: PERSON, THING and PERSON-THING.
22 Two exceptions to the rule that constants do not change are the DATE constant – today, and the INTEGER constant
- random. The former will always have the value of today’s date and the latter is a random number.

Chapter 3 Syntax, Types, Constants and Expressions 27

The basic types and associated constant forms are:

Type Example Description

BOOLEAN true true or false.
NUMBER 1000.123 A number with optional decimal point

and fractional component and
optionally preceded by a plus or
minus sign.

INTEGER 1,000 A positive or negative whole number
with no decimal point or fractional
component.

MONEY $100.00 A monetary value consisting of a
currency abbreviation, then an integer
followed by an optional decimal point
and two digits.

STRING "xyz" Anything starting and ending with a
single or double quote.

DATE 1 January 2021 A date in any commonly used format
including the shorthand today. By
default, day/month ordering is day
and then month.

TIME 10:23am A time in any commonly used format
including: now, midday, noon and
midnight.

GENDER female Any preferred gender or unspecified.

Figure 3 - Types and Constants

BOOLEAN facts and constants have a value of true or false. An INTEGER is a positive or
negative whole number which can be in the range -1018 to +1018. A NUMBER is a double
precision floating point number with approximately 1016 digits of accuracy and is
presented with up to 6 digits after the decimal point. A STRING is any series of
characters contained in double or single quotes.23

GENDER facts may refer to any string value. The value can also be UNSPECIFIED where a
user does not wish to provide their gender or where the value is otherwise
inappropriate or unnecessary.

A MONEY value is identical to a NUMBER except that if a fact or constant is not associated
with some other currency unit when its value is first used, then the fact or constant

23 Unicode quotes are also recognised. A string can contain single and double quotes. Strings can also contain
embedded facts enclosed in {curly brackets}. See § 4.13 below at page 56.

Coding with yscript Chapter 3 28

will be associated with the unit dollars. This can be changed by specifying a different
monetary unit.24 A MONEY value cannot be associated with a non-currency unit.

Date Constants

The DATE type is used to refer to calendar dates. Most standard date formats can be
used as constants in code and during execution. Examples of some of these are:

5th March 2020 MARCH 5, 2020
5th day of March, 2020 Mar 5 2020
5 MAR 20 5/3/2020
05.03.2020 05:03:20
2020-05-03 today

Figure 4 - Common Date Formats

The default output date format25 is: 21st March, 2021. The day/month order in yscript
code assumes that the day comes before the month. The day/month ordering for user
input when yscript code is executed is determined by the locale.

The supported range of years is from AD 1 to 999926. Where a year has only two digits,
and if it is less than 50 it will be taken to be a shorthand for 2000–2050, and abbreviated
years from 50 to 99 will be taken to be referring to 1951–1999. To avoid confusion
introduced by US style month-day ordering,27 it is good practice to use a date format
with a non-numerical month. It is also a good idea to avoid short form years and
include full four-digit years. The word today is interpreted as a date equivalent to
today’s date.

Time Constants

The TIME type is used to refer to time. Like dates, most common formats are recognised.
The default output format is hh.mm am/pm. This can be changed by specifying a
different STYLE.28 Times are assumed to be local by default. This can be changed by
adding a time zone.

24 This can be done on a per fact basis (see § 4.5 at page 45) or the default change be changed for all monetary units
(see § 4.8 at page 49).
25 This can be changed by specifying a new default date format. See § 4.8 at page 49.
26 Years before the Common Era (BCE or BC) can be dealt with using the calendar year unit. See page 48.
27 Apart from ISO dates, yscript code uses the European convention of assuming dates are in day-month-year format.
The day-month order for dates input by an application end-user is determined by the current locale.
28 See § Figure 22 – Time Styles at page 48.

Chapter 3 Syntax, Types, Constants and Expressions 29

For example:

10 PM 10.00p.m. 12 noon 2300 hours
22:00 10 o'clock 12 midnight now
20:00:02 10.20.30 a.m. noon 14:20 AEST29

Figure 5 - Common Time Formats

3.6 Number Formats

Numbers can be written in a variety of formats. All numbers can be positive or
negative and may always start with an optional plus or minus sign. For non-integers,
the decimal point can be written as a full-stop or as a comma and this may appear as
the first thing in a number without being preceded by a zero. Digits to the left of a
decimal point can be grouped into sets of 3 or 4 digits with commas, full-stops or
spaces. Where this is ambiguous, the number will be interpreted as though a comma
is a separator rather than a decimal point. Non-integers can also be expressed in
exponential form.

Some examples:

123 the integer, one-hundred-an-twenty-three
-1,000 minus one thousand using US/UK style comma grouping
200 000 000 two hundred million using ISO style digit grouping
10.200.000 ten point two million using European grouping
+1020,0000 ten point two million using Japanese 4 digit grouping
10’200’000 ten point two million using Swiss style grouping
10.5 ten and a half in US/UK style
10,50 ten and a half in European / international format
2.000,12 two thousand point twelve in European format
3,300 three thousand, three hundred in UK/US format
3,3 three-point three in European format
1.200e+3 one thousand, two hundred in exponential form

Figure 6 - Number Formats

The output numbering style can be set using the STYLE sub-declaration on a per fact
basis30 or can be set generally with the DEFAULT NUMBER STYLE declaration.

3.7 Currencies and Units of Measurement

Facts and constants with a numerical value can be associated with a unit of
measurement or an international currency.

29 For a list of supported time zones see Figure 29 - Time Zones at page 110.
30 See § 4.6 at page 46.

Coding with yscript Chapter 3 30

A reference to a numerical constant can include a unit by either indicating a unit type
after the constant value or, in the case of currency amounts, by preceding the constant
value with the currency type such as a dollar sign or other currency symbol. For
example:

50 km 30°C 100 MPH
1 µl 20 t 30 N m
€ 200 1000VT GBP 150

Figure 7 - Example Units

The specification of a unit may sometimes result in a change to the value of an
associated constant. The reference to € 200 in the example above will have no effect other
than indicating in the code that this is intended to be an amount in Euros. The euro is
a base unit and so € 200 has a value of 200. The second example - 50km, is expressed in
terms of the kilometre which is derived from the base unit of length – the metre. A
kilometre is 1000 metres and so 50 kms will have the value – 50000. The final example
- 1 µl, refers to one microlitre which is one-millionth of the base-unit - the litre and
accordingly will have the value of 0.000001.

Metric Base Units

Metric values are made up of an optional metric prefix followed by a metric base-unit.
The metric base-units31 are as follows:

amp A atmosphere atm bar bar
becquerel Bq bit b byte B
candela cd coulomb C dalton Da
degrees Celsius °C electronvolt eV farad F
gram32 g gray Gy hectare ha
henry H hertz Hz joule J
katal kat kelvin K litre l
lumen lm lux lx metre m
mole mol newton N ohm Ω
pascal Pa second s siemens S
sievert Sv tesla T ton ton
tonne t volt V watt W
weber Wb

Figure 8 –Metric Base Units

31 This is a list of all base units that can take a metric prefix and includes the seven SI base units, the official twenty
named dimensioned SI derived units, the dimensioned non-SI units accepted for use with SI units and the unofficial
non-SI units – bits, bytes, and tons.
32 The SI unit of mass is the kilogram which is one of the seven SI base units. Whilst the kilo is technically part of the
base SI unit name, yscript regards the base-unit for mass as the gram.

Chapter 3 Syntax, Types, Constants and Expressions 31

Non-Metric Base Units

Non-metric unit types such as non-dimensioned SI units, Imperial and US based
measures are also supported. These include:

acre acre ångström Å astronomical unit au
Bel bel British thermal unit BTU calorie Cal
chain ch cup cup day day
decibel dB degree ° degree Fahrenheit °F
fathom ftm fluid ounce fl oz foot ft
furlong fur gallon gal gravity 𝑔
hour hr inch “ inch of mercury inHg
knot kn mile mi minute '
month Mth nautical mile nmi neper Np
ounce oz percent % pint pt
pound lb quart qt radian rad
second " steradian sr stone st
tablespoon tbsp torr Torr week wk
yard yd year yr

Figure 9 – US, Imperial and other Units

Referring to a Unit

A unit can be referred to by either its full name or by its abbreviation.33 Long names
may be in plural or singular form. The following sets of examples all refer to the same
unit and will result in a constant having the same value:

€ 200, 200 euros, 200 EUR, 200
10 ohms, 10 Ω, 10
90 degrees, 90°, 90

Metric Prefixes

Metric base units can be combined with a metric prefix to indicate multiple and
submultiple values. Any metric base unit can be combined with the following prefixes:

33 There are also some automatic mappings for commonly used alternative forms of both the long and abbreviated
unit names. See Figure 27 - Unit Synonyms at page 105.

Coding with yscript Chapter 3 32

yotta Y 1024 1 000 000 000 000 000 000 000 000
yetta Z 1021 1 000 000 000 000 000 000 000
exa E 1018 1 000 000 000 000 000 000
peta P 1015 1 000 000 000 000 000
tera T 1012 1 000 000 000 000
giga G 109 1 000 000 000
mega M 106 1 000 000
kilo k 103 1 000
milli m 10-3 0.001
micro µ 10-6 0.000 001
nano n 10-9 0.000 000 001
pico p 10-12 0.000 000 000 001
femto f 10-15 0.000 000 000 000 001
atto a 10-18 0.000 000 000 000 000 001
zepto z 10-21 0.000 000 000 000 000 000 001
yocto y 10-24 0.000 000 000 000 000 000 000 001

Figure 10 - Metric Prefixes

The following examples each have the same meaning:

1 tonne, 1 t, 1 megagram, 1000 kg
50 km, 50 kilometres, 50000 metres

Note that for metric values, it is possible to refer to the same value in different ways.
A tonne is one million grams and hence the use of the metric prefix “mega” (which
means million). Similarly, a kilogram (abbreviated to kg in second example) refers to
1000 grams (the “kilo” prefix meaning 1000). One thousand kilograms is a million
grams or one tonne. Similarly, a kilometre is 1000 metres and so 50km is 50000 metres.

Base units can be combined to produce derived units. Only specific derived units are
recognised.

For example:

9.81 m/s2
30 miles per gallon
22 m2⋅kg⋅s−2⋅K−1⋅mol−1

Composite Units

Some units may optionally be constructed from components. The most important of
these is elapsed time which can be expressed in hours, minutes, and seconds. The other
composite units are feet and inches and pounds and ounces.

For example:

2 hours 10 minutes 3 seconds 10 lbs 3 ounces
10 minutes 10 feet
10 minutes 3.3 seconds 6’ 6”

Figure 11 - Composite Units

Chapter 3 Syntax, Types, Constants and Expressions 33

Currency Units

Currency units are indicated by preceding a numerical value with a currency
abbreviation or following a number with a currency description. Currencies can be
generic or currency specific. Generic currencies are not necessarily associated with any
country or economic group. For example:

Long Description Abbreviation Examples

dollars $ $100, $10,230.00, 2000 dollars
pounds £ £15, £22.50, 100 pounds
euros € € 75, € 150.00,50, 3.000 euros
yen ¥ ¥1000, ¥10,0000, 500 yen

Figure 12 - Generic Currencies

All currencies, also have a country or economic group specific unit. This is indicated
by three-letter ISO-4217 currency code. Some currencies also use unique abbreviations
that map to these codes. For example:

USD 20,000, US$20,000, USD$20,000, 20000 USD
AUD 5,000, A$5000, AUD$5000, 5000 AUD
GBP 3000, GBP£3,000, 3,000 GBP
EUR 75, 2.000,12 EUR
JPY 1000, JP¥10,0000, 500 JPY

3.8 Expressions

An expression consists of fact or constant references, connected by operators.
Expressions are used as conditions in statements (such as IF, WHILE and REPEAT) and for
building complex values to be assigned to facts. Binary operators describe the
relationship between two facts or perform an operation that depends on two fact
values. Expressions can be logical (combining truth values), relational (comparing two
values) or arithmetic (mathematical). Unary operators operate over a single fact value
and can appear before a fact or constant (pre-unary) or after a fact or constant (post-
unary). Unary operators bind more tightly (that is, have higher precedence) than
binary operators. The order of precedence for binary operators is (highest to lowest):

TIMES DIVIDED MOD
PLUS MINUS
EQUALS GREATER GREATEREQUAL LESS LESSEQUAL NOTEQUAL MATCHES IN
AND/OR AND/OR/WITH
AND AND/WITH
OR OR/WITH

Figure 13 - Operator Precedence

Coding with yscript Chapter 3 34

The order of evaluation of an expression can be changed by use of BEGIN-END pairs
(which work like brackets in ordinary mathematical expressions). For example, the
mathematical expression (2 + 3) × 4 could be written as:

BEGIN 2 PLUS 3 END TIMES 4

Logical Operators

Logical operators are used to combine propositions to form more complex propositions.
The available logical operators are:

Logical Operator Meaning
AND logical conditional AND
OR logical conditional OR
AND/OR logical conditional OR with high precedence
AND/WITH logical non-conditional AND
OR/WITH logical non-conditional OR
AND/OR/WITH logical non-conditional OR with high precedence

Figure 14 - Logical Operators

Conditional operators operate left-to-right but will stop when a result is known. Non-
conditional operators evaluate all arguments from left to right and are only used in
special circumstances where you want to evaluate all facts in an expression regardless
of whether they effect the logical result.

Some operators are semantically equivalent and only differ in respect of their
precedence. Normally, logical operators follow the same precedence found in most
programming languages, such that (for example) AND will bind more tightly than OR.
Like in mathematical expressions, this can be altered with BEGIN and END pairs as
discussed above. It is often however more aesthetic to use the AND/OR operator which
works exactly like the normal conditional OR operator but with a binding strength
above that of AND.34

Relative Operators

Relative operators compare two values for equality or relativity. The EQUALS and
NOTEQUALS operators will work with expressions returning any type of value. The IN-
operator tests if the first string is a sub-string of the second string and only works for
expressions returning type STRING. All other relative operators are only legal for values
with a type that has a continuous range (that is, DATE, INTEGER, MONEY, and NUMBER).
Relative operators may be preceded by the keyword IS and then optionally followed

34 When using conditional logical operators, the slightly less aesthetic AND/OR/WITH can be used for the same
purpose.

Chapter 3 Syntax, Types, Constants and Expressions 35

by the keywords THAN or TO where this makes the code read in a more English-like
way.

The following relative operators are available:

Relative Operator Meaning

EQUAL or EQUALS or
EQUAL TO or EQUALS TO

Test for equality

NOT EQUAL or NOT EQUALS or
NOT EQUAL TO or NOT EQUALS TO

Test for in-equality

IN Test if the first string is a sub-string
of the second

LESS or LESS THAN or
IS LESS THAN

Test if the first expression is less
than the second expression

GREATER or GREATER THAN or
IS GREATER THAN

Test if the first expression is greater
than the second expression

LESSEQUAL or LESSEQUAL THAN or
IS LESSEQUAL TO

Test if the first expression is less
than or equal to the second
expression

GREATEREQUAL or GREATEREQUAL TO or IS
GREATEREQUAL TO

Test if the first expression is greater
than or equal to the second
expression

Figure 15 - Relative Operators

Note that comparing facts of type NUMBER for equality or inequality will always be
inexact to allow for rounding errors that may have been introduced by calculation.

Some examples:

the value of the property IS LESS THAN $1,000,000

the number of people IS GREATER THAN 5

the type of game IS NOT EQUAL TO "a lottery"

"Neptune" IN the list of planets
the value of the prize IS GREATER THAN $100 AND the value of the prize IS
LESS THAN $1,000

Arithmetic Operators

Arithmetic operators normally perform mathematical calculations on numbers and
dates. The MATCHES operator returns a number between 0 and 100 indicating the extent
to which two strings are similar. This is useful if you are attempting to deal with free
form user responses. Whilst not strictly arithmetic, the PLUS operator will also
concatenate two strings.

Coding with yscript Chapter 3 36

Arithmetical Operator Meaning

TIMES Multiply two numbers.

DIVIDED or DIVIDED BY Divide the first number by the second
number.

PLUS Add two numbers together or concatenate
two strings.

MINUS Subtract the second number from the first
number.

MOD Return remainder after dividing first
number by second number.

MATCHES

Return a percentage fuzzy match for two
strings.

Figure 16 - Arithmetic Operators

Some examples:

1 PLUS 1
BEGIN 1 PLUS 2 END TIMES 3
"the cat" PLUS "in the hat"
the response MATCHES "something we're looking for" GREATER THAN 50

Unary Operators

Unary operators have a single operand which may appear before or after the operator.
The following unary operators are available:

Pre-Unary Operator Meaning
UNKNOWN Test if a fact is unknown or unknowable.
NOT Negate the truth value of the following expression.
DAY Extract the (integral) day from the following date.
HOUR Extract the hours value from the following time.
MINUTE Extract the minutes value from the following time.
MONTH Extract the (integral) month from the following date.
SECOND Extract the seconds value from the following time.
YEAR Extract a year from a date.

Figure 17 – Pre-Unary Operators

Chapter 3 Syntax, Types, Constants and Expressions 37

Post-Unary Operator Meaning

SECOND or SECONDS The previous expression is in seconds.

MINUTE or MINUTES The previous expression is in minutes.

HOUR or HOURS The previous expression is in hours.

DAY or DAYS The previous expression is in days.

WEEK or WEEKS The previous expression is in weeks.

MONTH or MONTHS The previous expression is in months.

YEAR or YEARS The previous expression is in years.
Figure 18 – Post-Unary Operators

The NOT operator negates the truth value of the expression that follows. It is not often
strictly necessary, as usually you can write boolean fact in its negative form. For
example, a reference to a fact in the form: section 123 does not apply is equivalent to
NOT section 123 applies.

The UNKNOWN operator checks to see whether the value of a fact is known without
attempting to find a value for it. All other unary operators relate to date and time
arithmetic. 35

Date Arithmetic and Comparison

Dates can be compared in expressions using regular equality and relational operators.
They may only be compared with other facts and constants of type DATE. For example:

the start of Spring EQUALS 1 September 2020
the date something happened IS LESS THAN the date
 something else happened

The components of a date can be extracted using the pre-unary operators: DAY, MONTH
and YEAR. The result in an integral (INTEGER) value. For example:

the month that Spring starts IS MONTH the start of Spring
the year it happened IS YEAR the date something happened

The PLUS and MINUS expression operators can be used to perform date arithmetic. Days
can be simply added to or subtracted from a date. It is also possible to add and subtract
weeks, months, and years by using the week, month, and years units. For example:

35 This is discussed further in the next section. Note that for constant values the effect of using the post-unary
keywords is equivalent to the use of an equivalent unit.

Coding with yscript Chapter 3 38

ninety days after this date IS this date PLUS 90
ninety days after this date IS this date PLUS 90 days
six months before this date IS this date MINUS 6 months

When adding or subtracting months or years to or from a date and where the day falls
on the last day of the month, the resulting date will fall on the last day of the month
for the new date. For example:

30 June 2020 PLUS 9 months EQUALS 31 March 2021
29 February 2020 PLUS 1 year EQUALS 28 February 2021

It is permissible to add or subtract days, months, and years to a date at the same time.
For example:

the final date IS the signing date PLUS 1 month PLUS 1 day

or a longer example:

DATE my date
INTEGER my day
INTEGER my month
INTEGER my year

RULE PROVIDES
my date IS 1 January 1 PLUS my day DAYS36 MINUS 1 DAY
 PLUS my month MONTHS MINUS 1 MONTH
 PLUS my year YEARS MINUS 1 YEAR

Time Arithmetic and Comparison

Like dates, fact values and constants of type TIME can also be compared and subject to
arithmetic. Times are stored as the number of seconds since midnight in local time.

For example:

TIME the time

RULE PROVIDES
IF the time IS LESS THAN 12 noon THEN
 it is morning
ELSE IF the time IS LESS THAN 6 pm THEN
 it is afternoon
ELSE
 it is evening

Seconds can be simply added to or subtracted from times and they will continue to
display correctly regardless of whether a time becomes negative or is greater than 24
hours. Times can be added and subtracted to DATES. For example:

36 The units DAY, WEEK, MONTH and YEAR are also reserved words when capitalised. These have the same effect as
using the corresponding units but can be applied to a fact as well as being part of a constant reference.

Chapter 3 Syntax, Types, Constants and Expressions 39

RULE PROVIDES
ASSERT the start date IS 31 December 2021
ASSERT the start time IS 11pm
ASSERT the finish time IS the start time PLUS 3 hours
ASSERT the finish date IS the start date PLUS the finish time

will produce:

 The start date is 31st December, 2021. The start time is
 11pm. The finish time is 2am because the start time is 11pm.
 The finish date is 1st January, 2022 because the start date
 is 31st December, 2021 and the finish time is 2am.

Times from different time zones37 may be combined and will be automatically
converted as necessary. For example:

TIME the time in Sydney
 UNIT AEST

RULE PROVIDES
the time in Sydney IS 5.16am UTC-7

will produce:

The time in Sydney is 10.16pm AEST.

Expressions Involving Numerical Units

The value of all facts and constants is stored in base-unit format.38 For example, the
value of 1000 m and 1 km will both be 1000. Composite units39 are also stored using the
unit associated with the base form. Elapsed time expressed in hours and/or minutes is
stored in seconds, feet are stored as inches and pounds are stored as ounces. For example,
the constants - 2 hours and 120 minutes, will both have the value 7200.

The effect of this is that generally units forming part of a base-unit or base form family
can be compared or assigned to each other. These units can also be added together or
subtracted from each other. For example:

RULE PROVIDES
ASSERT the length IS 750 m PLUS 1.25 km
ASSERT the other length IS 50 feet PLUS 10 feet 6 inches

will produce:

The length is 2 km. The other length is 60 ft 6 in.

Units from different systems of measurement are converted as necessary. So, for
example:

37 See Figure 29 - Time Zones on page 110 for a list of supported time zones.
38 See § 3.7 above at page 29.
39 See Composite Units at page 32.

Coding with yscript Chapter 3 40

NUMBER the imperial length
 UNIT yards

RULE PROVIDES
ASSERT the length IS 750 m PLUS 60 ft 6 in
ASSERT the imperial length IS the length

will produce:

The imperial length is 840.37664 yd because the length is 768.4404 m.

Finally, values associated with units can be multiplied and divided. For example:

RULE PROVIDES
ASSERT x IS 10 metres TIMES 10 metres
ASSERT y IS 10 feet TIMES 24 inches

will result in:

X is 100 m². Y is 20 sq ft.

Chapter 4: Facts

Facts are used to hold a value during execution and are referred to by a descriptor that
is not a constant and that is not text. Generally, fact names should be written in lower
case unless referring to a proper noun or an abbreviation. Fact names can contain any
Unicode character in UTF-8 encoding. Case is significant. Like other descriptors, fact
names can contain multiple spaces or tabs and can extend across more than one line.
Blank space is treated as a single space.

4.1 Fact Declarations

Facts are always associated with a single type. Most facts will be of type BOOLEAN, that
is they are propositional statements representing either a premise or a conclusion.
Other valid fact types are DATE, GENDER, INTEGER, MONEY, NUMBER, STRING and TIME.40 It is
not generally necessary41 to formally declare a fact unless its type is not clear from the
way it is used or if you want to modify the way the name of the fact is used when
communicating with the user. Fact declarations consist of an optional qualifier
followed by a type, optionally followed by the keyword FACT and then the name of the
fact. If only the keyword FACT appears then the fact is assumed to be BOOLEAN.

The formal syntax42 for a fact declaration header is: 43

 [GOAL] [SYSTEM | UNREPORTED]
[BOOLEAN | GENDER | INTEGER | NUMBER | STRING | TIME] [FACT]
 fact-name [FROM context]

The qualifiers SYSTEM and UNREPORTED serve to supress the reporting of fact values for
facts that are being used in a mechanical way. The use of contexts allows for facts to
have separate namespaces and is discussed at the end of this chapter.

Where the GOAL keyword is specified, this procedure will be marked as a goal rule.

Some examples of simple fact declarations include:

INTEGER the number of children of the testator
MONEY the value of the prize
STRING the name of the event
FACT the testator is survived by a legal or de facto spouse

40 Facts may also refer to a named subject which is a composite fact discussed below. See § 4.12 at page 53.
41 The other main reason for formally declaring facts is so that they can be shared between different contexts as
discussed in § 4.18 at page 58.
42 The convention used in this manual is that square brackets [] indicate that the contents are optional, curly brackets
{} indicate one or more occurrences of their content and pipe (|) indicates an alternative. Non-literals are shown in
italics. boolean-fact {AND boolean-fact} thus means a boolean fact (for example, section 23 applies) optionally
followed by zero or more occurrences of the keyword AND followed by another boolean fact (for example, section
23 applies AND section 24 applies).
43 Fact declarations can also be followed by a prompt, an alias, attachments, translations, explanations, and a range.
Where a fact is part of an object, it can also contain statements. See § 6.8 at page 78.

Coding with yscript Chapter 4 42

Fact declarations should appear outside of rules and procedures. Facts cannot be
declared as being local to a rule or procedure and are accessible from all rules in the
context.44

4.2 Propositions

yscript code generally involves manipulating facts in propositional form. Propositional
logic is a branch of logic that is concerned with combining statements which are true
or false (propositions) to form or decompose more complex propositions. Unlike other
forms of logic, propositional logic is not concerned with how the propositions
themselves work. Propositions are regarded as indivisible units of expression. In
yscript, propositions are represented as BOOLEAN facts.

The name of a fact operates much like a variable name in a conventional programming
language. The thing that is different in yscript, however, is that the fact names are also
used to build elements of English dialogs which are used to interact with application
users. This is important because it means that information can be treated symbolically
but with no requirement to provide a separate textual representation for each symbol.
Whilst the composition of propositional (boolean) fact names is irrelevant to the
symbolic operation of an application (that is, what conclusions are formed and for
which reasons) it is very important from the point of view of communicating with an
end-user.

yscript uses a light-weight natural language parser45 to transform simple English
language propositions into their positive or negative form and to turn them into
questions when necessary. A proposition is regarded as a subject followed by a
predicate. The subject is the person or thing that the proposition is about. The
predicate modifies the subject. A predicate implies some action and should always
start with a simple or compound verb and may optionally be followed by an object or
modifying action phrase:

subject compound-or-simple-verb [object]

The most critical step for yscript in processing a proposition is to divide the
proposition into a subject and a predicate. The current approach applies a set of
heuristic rules that identify different parts of speech based around generally used
word forms supplemented by a dictionary of commonly used verbs expressed in their
present, plural, past and past-participle forms. The algorithm will prefer auxiliary
verbs over all other verbs in a proposition. Where no auxiliary verb is present, it will
look for a known verb in past tense or plural form, then for words that appear to be
verbs (that is, which appear to be plurals or to be in past tense or which are preceded

44 Facts may also be shared between contexts. See § 4.18 at page 58.
45 If you are interested in how yscript parses propositions, the standard distribution includes a utility called trans
which interactively prompts for a proposition and shows how and why the proposition is split into a subject, verb
and object as well as displaying resultant translations.

Chapter 4 Facts 43

by an adverb) and then a known verb in present tense. The algorithm considers parts
of speech that appear to be nouns and several other factors.

The list of auxiliary verbs includes:

am are can could did do does
had has have is may might must
ought shall should was were will would

Figure 19 - List of Auxiliary Verbs

The practical upshot of all of this is that when choosing the name for a BOOLEAN fact,
you should describe it as a proposition, that is it should start with a subject, then a
verb (in the positive or negative and in compound or non-compound form) and,
optionally an object. For example:

yscript is a computer language
propositional logic studies ways of joining statements
the rule applies

Provided that fact names appear in this format, yscript will normally be able to affect
sensible prompts and translations that can be used during user sessions. For the above
examples, the following automatic prompts and translations would be used:

Is yscript a computer language?
yscript is a computer language.
yscript is not a computer language.

Does propositional logic study ways of joining propositions?
Propositional logic studies ways of joining propositions.
Propositional logic does not study ways of joining propositions.

Does the rule apply?
The rule applies.
The rule does not apply.

Internally, all boolean fact names are stored in positive form. Contractions are
expanded, and some grammatical forms simplified.

The following sets of alternatives all refer to the same fact:

the rule applies
the rule does not apply
the rule does apply
the rule doesn’t apply

the person went overseas
the person did not go overseas
the person didn’t go overseas
the person did go overseas

the defendant did twenty years in prison
the defendant did not do twenty years in prison

the testator had no children
the testator had children
the testator did not have children
the testator didn’t have children

Coding with yscript Chapter 4 44

4.3 Dealing with Grammatical Errors

The natural language parsing techniques used by yscript to transpose and manipulate
propositions are heuristic in nature and occasionally mistakes will be made.46 When
this happens, the first step is to try to rephrase the proposition in a more straight-
forward way. Provisos and exceptions are probably best expressed as separate facts.
Passive statements should be expressed in active form. The parser will always prefer
an auxiliary verb47 over any other known verb or word that appears to be a verb.
Inserting an auxiliary verb like “does” or “did” will often resolve the problem. If this
is superfluous, it will serve just to identify a verb and will not appear in consultations.

If these techniques do not work, then there are three other approaches. The simplest
is to divide the proposition manually by inserting a tilde (~) between the proposition
subject and predicate (that is, before the compound or simple verb). This will become
part of the name of the fact and must be included the first time a fact is used. For
example:

the client~thinks he has a good case
the cost of the appeals~exceeded expectations

The parser currently contains a dictionary of around 6,000 commonly used verbs. For
other verbs (particularly irregular verbs), it may either not recognise the word as a
verb or transpose it incorrectly to and from its plural, past tense, or past participle
form. In such cases, verbs can be added to the dictionary using the VERBS declaration.48
The syntax is:

VERB|VERBS { present|plural|past|past-participle }

For example:

VERBS catch|catches|caught|caught break|breaks|broke|broken

Where none of these approaches works, the final resort is to declare specific prompts
and translations for the fact.49

46 Apart from the trans utility mentioned previously, the yscript interpreter has a -t flag which will display
the translations for all facts in an application.
47 See Figure 19 at page 43 for a list.
48 Previously, yscript was much more reliant upon verbs being declared in code. The need for the VERBS declaration
is now much reduced to the point that it is nearly always unnecessary. In older code, you may also see that verb
forms were presented in condensed form and separated by tildes. This usage is deprecated and probably best
forgotten as a bad idea.
49 See § 4.11 at page 51 below.

Chapter 4 Facts 45

4.4 Non-Boolean Facts

Non-boolean facts are introduced in one of two ways: by use or formally. If the first
use of a fact requires that it have a type other than boolean, the fact is automatically
associated with this type.

For non-boolean facts, choose a name that can be followed by an “is” or an “are”
(where the subject is plural) and a value. For example, the fact declarations:

MONEY the purchase price
MONEY the proceeds of the raffle
DATE the date of the purchase
STRING the names of the children

will result in the following prompts and translations:

What is the purchase price?
The purchase price is $1,000,000.

What are the proceeds of the raffle?
The proceeds of the raffle are $200.

What is the date of purchase?
The date of purchase is 28th February 2020.

What are the names of the children?
The names of the children are Moe, Larry and Curly

4.5 Currencies and Units of Measure

Numerical facts may also be associated with a unit of measure and a dimension. The
units associated with facts can be declared explicitly or can be inferred from
assignments and expression usage of constants or other facts. For example, the
following statements or expressions will result in the fact having the specified type,
unit, and dimension:

Statement Type Unit Dimension
the weight IS 10 kg INTEGER grams kilograms

the force IS LESS THAN 1.0 N NUMBER newtons newtons

the temperature EQUALS 100 °C INTEGER degrees
Celsius

degrees
Celsius

the amount GREATER THAN $100.00 NUMBER dollars dollars

A unit and dimension association can also be indicated as part of a formal fact
declaration. This is done using the UNIT sub-declaration. The syntax is:

 UNIT unit-name

Coding with yscript Chapter 4 46

The unit-name may be either the full name or the abbreviation for a unit. For example,
the formal declarations for the facts from the previous examples would be:

INTEGER the weight UNIT kilograms
NUMBER the force UNIT newtons
INTEGER the temperature UNIT degrees Celsius
NUMBER the amount UNIT dollars

The dimension of the unit is indicated by a metric prefix to the unit name. It is used as
the default when asking the end-user for any values during consultations. It will also
sometimes affect the way that a value is displayed.50

Where a fact is assigned the value of an expression with a different unit type, the value
and unit type will be converted where possible. This includes units with different
dimensions as well as units from different systems of measurement.

For example:

INTEGER the temperature UNIT degrees Celsius
NUMBER the wind speed UNIT km/h
INTEGER the temperature in Fahrenheit UNIT °F
INTEGER the wind speed in miles per hour UNIT mph

RULE PROVIDES
ASSERT the temperature IS 25°C
ASSERT the wind speed IS 10 km/h
ASSERT the temperature in Fahrenheit IS the temperature
ASSERT the wind speed in miles per hour IS the wind speed

will produce:

 The temperature is 25°C. The wind speed is 10 km/h. The
 temperature in Fahrenheit is 77°F because the temperature
 is 25°C. The wind speed in miles per hour is 6 mph because
 the wind speed is 10 km/h.

4.6 Time Zones

Times are assumed to be local by default. This can be changed by specifying the time
UNIT to a particular time zone. 51 For example:

TIME the time in New York City
UNIT EST

Note that time zones are not completely standardised and can be ambiguous. The time
UNIT can also be set to an IANA country code.52

50 For example, where the unit millimetres or mm is used, lengths will be displayed as millimetres for values less
than 10m. Similarly, values using the unit/dimension kilometres will be displayed in kilometres even when
greater than 1000.
51 See Figure 29 - Time Zones at page 110 for a complete list of available time zones.
52 See Figure 30 - Time Zone Country Names at page 112 for a list.

Chapter 4 Facts 47

For example:

TIME the time in London
UNIT Europe/London

Apart from being unique, using IANA names has the advantage that it will select a
time zone that accounts for any daylight savings changes. Where there is no available
time zone, this will be set to local time.

The overall default time zone can be changed with the DEFAULT TIME UNIT declaration.53

4.7 Styles

Facts can also be associated with styles which can be used to specify how the value of
a fact should be displayed. The style will normally be automatically selected based on
the fact type and associated unit type. This can be changed by using the STYLE sub-
declaration.

The syntax is:

STYLE style-description

For example:

 NUMBER the length of the boat
 UNIT metres
 STYLE European

Numerical Styles

The valid numerical styles which are applicable to fact declarations of types: NUMBER,
INTEGER and MONEY are:

default use commas to separate 1,000s and a dot for the decimal point
european use dots to separate 1.000s and a comma for the decimal point
si use SI format – spaces to separate 1 000s and a dot for the decimal point
eastern-european use SI format, but use a comma for the decimal point
japanese use commas to separate groups of 1,0000s and dot for the decimal point
swiss use quotes to separate groups of 3 digits and a comma for decimal point
roman use roman numerals

Figure 20 – Numerical Styles

53 See § 4.8 at page 49.

Coding with yscript Chapter 4 48

Calendar Years

Calendar years can be declared as the INTEGER unit – calendaryear. When output,
calendar years will be expressed to be BC / BCE and AD / CE depending upon the year
value. The output presentation can be changed with the following styles:

AD or BC precede years after zero with AD and follow years before 0 with BC
A.D. or B.C. precede years after zero with A.D. and follow years before 0 with B.C.
BCE or CE follow years after zero with CE and follow years before 0 with BCE
B.C.E. or C.E. precede years after zero with C.E. and follow years before 0 with B.C.E.

Figure 21 - Calendar Year Styles

Where the style is in lowercase, the era will only be included for non-contemporary
dates (which are defined as prior to AD 1000 and after 2200). For example:

AD 300
300 CE
2000 B.C.E
2021

Time Style Formats

The TIME style format consists of a string with the following elements:

HH zero padded hours (00-23)
hh hour (1-12)
MM zero padded minutes (00-59)
mm minutes (1-59)
SS Zero padded minutes (00-59)
ss Seconds (1-59)
am or pm am, pm, noon or midnight

AM or PM AM, PM, NOON or MIDNIGHT

A.M. or P.M. A.M., P.M., NOON or MIDNIGHT
TZ or tz international time zone

Figure 22 – Time Styles

For example:

Format Example Output
hh.mm.ssam/pm 10.23pm
HH:mm:ss 22:23
HHmm:ss hours 2223:15 hours
HH:MM tz 14:25 AEST
hh.mm am/pm TZ 2.15 am UTC+11

Chapter 4 Facts 49

Date Style Formats

The output date format can be changed by specifying a DATE style which is a string
containing the following elements:

day or dd the day (1-31)
DD zero padded day (01-31)
month the month (January-December)
MONTH the month in capitals
MMM abbreviated month in capitals
mmm abbreviated month in mixed case
MM zero padded month as number
mm the month as a number (1-12)
th day suffix (st, nd or th)
TH day suffix in capitals
year or yyyy the year (0-9999)
yy the year (00-99)

Figure 23 - Date Styles

For example, setting the date style to “the dayth of month, year” will result in dates
displaying as in “the 20th of December, 2021” and “mm/dd/yyyy” will display the first of
March 2021 as “3/1/2021”.

There are no styles for fact values of type BOOLEAN, GENDER and STRING.

4.8 Default Styles, Numbering and Units

The default output style and numbering for all facts of a particular type can be
changed using the DEFAULT declaration. The available default style declarations are:

Declaration Syntax Example

DEFAULT NUMBER54 STYLE number-style55 DEFAULT NUMBER STYLE swiss

DEFAULT MONEY UNIT currency-unit56 DEFAULT MONEY UNIT euro
DEFAULT YEAR STYLE year-style DEFAULT YEAR STYLE B.C.E.
DEFAULT DATE STYLE date-format-string DEFAULT DATE STYLE dd/mm/yyyy
DEFAULT TIME STYLE time-style57 DEFAULT TIME STYLE hh:mm:ss
DEFAULT TIME UNIT time-zone DEFAULT TIME UNIT Asia/Tokyo

Figure 24 - Default Styles, Numbering and Units

54 This will change the formatting for all output numerical values, that is it will apply to types: NUMBER, INTEGER and
MONEY.
55 See Figure 20 – Numerical Styles on page 47 for a list of valid numerical styles.
56 Currency units are discussed on page 33.
57 See Figure 22 – Time Styles on page 48.

Coding with yscript Chapter 4 50

4.9 Certainty

Before a fact is assigned a value or one is provided by the user, the fact value is unknown.
If there is no way of otherwise determining a value for a fact and the user says that the
value of the fact is uncertain, the fact is tagged as being unknowable (or unspecified).
Once a fact becomes unknowable, the system will not attempt to use rules to find a
value and it will not re-ask the user for a value.

The certainty of a fact can be tested with the UNKNOWN pre-unary operator. This will
return true if the fact value is uncertain (that is, not value has yet to be determined)
or unknowable (that is, it is not possible to know a value for this fact).

For example:

IF UNKNOWN the defendant is bankrupt THEN
 it is possible that the defendant is not solvent

4.10 Ranges

Where there is a need to further limit the range of acceptable responses from the user
then a FACT declaration can include a RANGE restriction.

The syntax is:

RANGE arithmetic-term TO arithmetic-term
{ RANGE arithmetic-term TO arithmetic-term } |

RANGE arithmetic-term { RANGE arithmetic-term }

Continuous Ranges

The first format is used to restrict user responses to a continuous range of values. It is
unusual, but you can also specify a split range of values by using more than one RANGE
declaration. Some examples:

MONEY the maximum amount of money payable as a separate prize
 RANGE $0 TO the total value of all of the prizes

DATE the school holidays
 RANGE 28 March 2020 TO 11 April 2020
 RANGE 19 June 2020 TO 30 June 2020
 RANGE 20 September 2020 TO 3 October 2020
 RANGE 15 December 2020 TO 28 January 2021

DATE the notice period
 RANGE today TO today PLUS 6 MONTHS

Discrete Ranges

Ranges can also be used to specify that a user must select from a specific set of values.
This can be used with facts of any type, but most typically this is used for facts of type
STRING.

Chapter 4 Facts 51

For example:

STRING the name of the security agency
 RANGE "ASIO" RANGE "ASD" RANGE "ASIS" RANGE "DIO"
 RANGE "AFP" RANGE "AIC"

Where a discrete range of responses is specified, the calling environment should
present a question in relation to the associated fact in multiple choice format.

For example:

1) What is the name of the security agency?
 (a) ASIO
 (b) ASD
 (c) ASIS
 (d) DIO
 (e) AFP
 (f) AIC

Please select?
**

Range Errors

If the user attempts to provide a value for a fact that is out of range, an error message
will be issued58 and the question re-asked. For example:

MONEY the total value of all prizes
MONEY the maximum amount of money payable as a separate prize
 RANGE 0 TO the total value of all prizes

RULE PROVIDES
DETERMINE the maximum amount of money payable as a separate prize

will result in the consultation:

 1) What is the total value of all prizes?
 ** 500

 2) What is the maximum amount of money payable as a separate prize?
 ** 1000

 The value must be between $0 to $500.

4.11 Prompts and Translations

One of the features of yscript is its ability to automatically transpose propositions into
questions, translations, and explanations so that you do not need to maintain a
separate set of textual material for an otherwise symbolic form of representation.
Nevertheless, there are occasions when you will want the representation as contained

58 This message can be customised using the RANGE argument to the TRANSLATE declaration covered in the next
section.

Coding with yscript Chapter 4 52

in facts in the code to be different from the text that is used to communicate with the
user.

In addition to specifying RANGE restrictions following a formal fact declaration, you can
also provide a prompt and translations. The syntax for specifying a prompt and
translations is:

PROMPT text

TRANSLATE [constant | RANGE | UNKNOWN] AS text

For example:

 FACT the testator died intestate59
 PROMPT did the deceased die without leaving a will
 TRANSLATE true AS the deceased died without a will
 TRANSLATE false AS the deceased left a will

In the case of a non-boolean fact, the translation-text will precede the value when
output. If you want to put the value somewhere else, include an empty pair of curly
brackets. Where constant is omitted, the translation becomes the default translation and
is used if none of the other translations apply. If constant is replaced by the keyword
UNKNOWN,60 the translation will be used where the fact value is unknown or unspecified.
If value is replaced by the keyword RANGE, the translation will be used in place of the
automatically generated out of range error message.

For example:

 INTEGER the number of surviving children
 RANGE 0 TO 100
 PROMPT how many children survived the testator
 TRANSLATE 0 AS no children survived the testator
 TRANSLATE 1 AS one child survived the testator
 TRANSLATE AS {} children survived the testator
 TRANSLATE RANGE AS please enter the number of children (0 if none)
 TRANSLATE UNKNOWN AS it is not known if the testator had any children

Apart from including the value of the fact itself in translations and prompts, you can
also include the value of any other fact by including the fact name in curly brackets. If
the value of the fact is not known, this will be determined before a value for the current
fact is requested or set.61

59 Prompts and translations will automatically be transformed into questions and sentences which start with a
capital letter and finish with an appropriate punctuation character. These can also be specifically provided. Quotes
surrounding text blocks will normally be removed and should be escaped if you really want a quote or translation
to appear in quotes.
60 You can also use the constant unknown or unspecified which in this context all have the same meaning.
61 Named subjects (discussed in §4.12 on page 51) may also be used in translation text.

Chapter 4 Facts 53

For example:

STRING the capital city
TRANSLATE AS {} is the capital of {the name of the country}

4.12 Named Subjects

Named subjects are used to dynamically replace references to subjects contained in facts
with the names or appropriate pronouns and possessives for persons and things.
There are three types of named subjects: PERSON, THING and PERSON-THING. A PERSON is
animate with a name and optionally a gender and preferred form of address. This will
be replaced with the preferred name and a pronoun. A THING is inanimate and is used
to refer to such entities as companies and places. Where appropriate, a THING can be
replaced by “it” or “its”. A PERSON-THING may be either animate or inanimate such as a
client, a buyer or seller, or a party to a legal action.

Named subject declarations

Named subjects must be specifically declared.62 For example:

 PERSON the testator
 THING the agency
 PERSON-THING the owner

During execution, when a fact containing a named subject is first used (that is, the fact
becomes a goal or a value has been concluded), yscript will prompt for a name and
ask questions about preferred gender or whether a PERSON-THING is animate or not.

For example:

1) What is the name of the owner?
 ** Malcolm Turnbull

2) Is Malcolm Turnbull a person?

** yes

3) What is Malcolm Turnbull’s preferred gender?

** male

4) What is Malcolm Turnbull’s preferred form of address?

** Mr Turnbull

Related Facts

The named subject itself is a fact with the underlying basic type STRING. When a named
subject is declared, up to three other related facts may also be automatically created.
These have the following types and format:

62 Named subjects can be declared at any point in the code. They do not have to be declared before they are used.

Coding with yscript Chapter 4 54

STRING the name of the named subject
BOOLEAN the named subject is a person
GENDER the gender of the named subject
STRING the preferred form of address for the named subject

Named subjects of type PERSON-THING will generate all four of these related facts. THINGs
only have a name and PERSONs have a name, gender, and preferred form of address.

The GENDER related fact, has the following default translations:

GENDER the gender of the named subject
PROMPT what is the named subject's preferred gender
TRANSLATE AS the named subject's preferred gender is {}

The preferred form of address related fact, has these default translations:

STRING the preferred form of address for the named subject
PROMPT what is the named subject's preferred form of address
TRANSLATE AS the named subject's preferred form of address is {}

These related facts can be used like any other facts.63 Their values can be set and used,
and new prompts and translations can be defined. For example, you could change the
prompt and translation for the named subject is a person fact as follows:

PERSON-THING the taxpayer
BOOLEAN the taxpayer is a person
PROMPT the taxpayer is an individual
TRANSLATE "yes" AS the taxpayer is an individual
TRANSLATE "no" AS the taxpayer is a company or some other entity

Any of the facts related to a named subject can be unknown or unspecified (indicated
with an "unknown", "unspecified" or blank) response from the user during execution. A
non-blank response for preferred gender is also taken to be "unspecified". Where the
name of a named subject is unknown, the description of the named subject will not be
replaced in any dialogs. Where it is unknown whether a named subject refers to a
person or not, or where it is known that the named subject is referring to a person, but
the preferred gender is unspecified, then the name is always used to replace references
to the named subject in other facts.

63 Using a related fact that is a component of a named subject, may alter the order that the system asks for the value
of other related facts to the named subject.

Chapter 4 Facts 55

For example, assuming the consultation is asking about a fact named the taxpayer
which is of type PERSON:

1) What is the name of the taxpayer?
 ** Amelia Smith

2) What is Amelia Smith's preferred gender?
 ** pansexual

3) What is Amelia Smith’s preferred form of address?
 ** Amy

4) Is Amy an Australian citizen?
 ** yes

5) Does Amy earn income in Australia?
 ** what64

 1) The name of the taxpayer is Amelia Smith.
 2) Amelia Smith’s preferred gender is pansexual.

3) Amelia Smith’s preferred form of address is Amy.
 4) Amy is an Australian citizen.

The intended user response a question related to the preferred form of address fact is
a complete replacement for the name of the named subject.65 Where the value appears
to be a complete form of address, it will be used in place of the name. If however, the
user responds with just an honorific (such as "Ms", "Dr", or "Professor"), this is used to
construct a preferred name consisting of the honorific followed by a surname. If the
name is a set of pronouns separated by slashes (e.g., zie/zim/zis), or if the name
otherwise doesn't appear to be valid, the original name is used. In all cases, the value
of the preferred form of address will be set to a complete name.

Named Subject Declaration Modifiers

Which related facts are used for a named subject and other named subject behaviour
can be changed with the modifiers: DEFINITE, GENDER-NEUTRAL, INFORMAL and UNNAMED. They
can be combined and are used as in:

 DEFINITE the vehicle
 PERSON the academic
 GENEDER-NEUTRAL PERSON the applicant
 INFORMAL PERSON the child
 UNNAMED PERSON the defendant
 UNNAMED GENDER-NEUTRAL PERSON the deceased

DEFINITE named subjects are used with THINGs to automatically prepend the definite
article – “the”. This is often a more natural way to describe certain classes of inanimate
objects that are referring to a class of things66. GENDER-NEUTRAL named subjects don't ask

64 The “what” command is used in cyscript to display the known user supplies facts (or premises). See Appendix 2
for a complete list of cyscript interactive commands that are available.
65 This may be more formal or less formal. For example, if the name is “George Brown”, then the preferred form
of address could be “Mr Brown” or “George”.
66 For example, the description of a group of things or the type or class of a group of persons or things.

Coding with yscript Chapter 4 56

for a preferred gender and do not use pronouns. INFORMAL named subjects don't ask for
a preferred form of address. UNNAMED named subjects use a name only once, and then
revert to using only the name of the named section itself or pronouns. UNNAMED named
subjects never ask for a preferred form of addresses. GENDER-NEUTRAL INFORMAL named
subjects only ask for a name and use this for all named subject replacements. GENDER-
NEUTRAL UNNAMED named subjects are like UNNAMED subjects but do not use any pronouns.

4.13 Embedded Facts

Fact values may be embedded as part of the name of another fact by including the fact
name within curly brackets. For example:

{the name of the child} is the child of {the name of the parent}

When executed, this code will lead to the following dialog:

 1) What is the name of the child?
 ** Grace

 2) What is the name of the parent?
 ** Henry

 REPORT

 Grace is the child of Henry.

Embedded facts can also be used in text, such as for document assembly, translations,
and explanations. Where the value of an embedded fact is unknown prior to the use
of the parent fact, a value will be determined.

4.14 Explanations

Explanations are text descriptions that add further explanation about a fact (the default
explanation) or that provide information about the fact when it has a particular value
(valued explanations). It is up to the application interface as to how these are used, but
typically the default explanation will be displayed before the prompt seeking a value
for a fact. Valued explanations are displayed after a user has provided a value for a fact
or can also be used to give the user more information about the implications of
answering a question in a particular way.

Explanations are declared in a similar way to translations. The syntax is:

EXPLAIN [constant | UNKNOWN] AS text

Chapter 4 Facts 57

The following example code is from an application relating to community gaming:67

STRING the type of gaming activity
RANGE "Art union" RANGE "Draw Lottery"
EXPLAIN AS The Community Gaming Regulations 2020 regulate the
 Conduct of gambling for social, charitable and non-profit
 purposes in NSW. The Regulations provide for several categories
 of permitted gaming activities.
EXPLAIN "Art union" AS You will now be asked a series of questions
 to see whether or not your proposed activity is covered by the
 "Art Union gaming activity" provisions which are contained in
 regulation 4.
EXPLAIN "Draw lottery" AS
 You will now be asked a series of questions to see whether or
 not your proposed activity is covered by the "Draw Lottery”
 provisions which are contained in regulation 6.

RULE PROVIDES
IF the type of gaming activity EQUALS "Art union" THEN
 DETERMINE IF regulation 4 applies
IF the type of gaming activity EQUALS "Draw Lottery" THEN
 DETERMINE IF regulation 6 applies

When executed using cyscript, the session will go:

The Community Gaming Regulations 2020 regulate the Conduct of gambling for
social, charitable and non-profit purposes in NSW. The Regulations provide
for several categories of permitted gaming
activities.

1) What is the type of gaming activity?
 (a) Art union
 (b) Draw Lottery

 Please select?
 ** b

You will now be asked a series of questions to see whether or not
Your proposed activity is covered by the "Draw Lottery" provisions

 Which are contained in regulation 6.

2) Does regulation 6 apply?
 **

4.15 Information

Apart from attaching explanations that always get displayed before a question is
asked or when a particular answer is made or contemplated, it is also possible to
provide further information about a question using the INFO sub-declaration.

The syntax is:

INFO text

67 This type of application is probably better dealt with by use of the CASE-WHEN-THEN statement which
automatically applies range restrictions. See § 5.3 at page 64.

Coding with yscript Chapter 4 58

For example:

FACT you are married
INFO If you are unsure about whether you are married, please see the
Marriage Act 1961 (Cth).

In cyscript, the INFO message will be displayed whenever the user gives a blank or
illegal response to a question. Other calling environments can display this when a user
hovers the mouse pointer over a question or clicks on an “information” type icon or
symbol.

4.16 Attachments

Fact declarations may include one or more attachments. Attachments are used in
document assembly and are more fully discussed in § 8.5. The syntax is:

ATTACH [DISPLAYED] [qualifier] REPORT|DOCUMENT|TEMPLATE name [AS
description]

4.17 Aliases

Aliases are also used in document assembly and provide a way to specify a short name
for a fact as used in document templates.68 The syntax is:

ALIAS name

For example:

STRING the name of the first mentioned party
ALIAS party_one

4.18 Context

For most small applications, all fact names and rules exist in the same namespace. Any
rule can use and set a value for any fact. For larger projects, yscript code can be divided
into contexts. A context provides a separate namespace for facts and rule names that
are related, and which can operate independently or as part of some larger application.
A file may contain more than one context and a context can be split across several files.

Context Declaration

At the start of each new file, rules and facts are in the shared context and are available
in all other contexts. A new context is introduced with a declaration of the form:

68 See § 8.5 at page 97.

Chapter 4 Facts 59

CONTEXT context-name

where context-name is the name of a new of existing context. For example, to specify
that the rules and facts following in a file are to do with a particular piece of legislation,
you could say:

CONTEXT Modern Slavery Act 2018 (Cth)

Once declared, everything following the context declaration will be within the
specified context until either another context declaration or end of file.

Namespace

Rules and facts within each context have their own separate namespace. If a fact or
rule exists with same name as one in the shared context, the version of the fact in the
current context will be used.69 Similarly, if identically named facts or rules exist in two
or more contexts, all are treated as referring to different facts.

Where you need to refer to a fact from a different context (other than the shared
context), you can declare it within a given context as follows:

type fact FROM context

For example:

CONTEXT Modern Slavery Act 2018
FACT section 23 applies FROM Corporations Act 2001
NUMBER amount of proceeds FROM Gaming Regulations 2020

All references to the fact with the current context will then be taken to be to the fact
from the external context. You can access the fact value and/or set a new value. Rules
needing the fact will use it regardless of whether they are in the original context or the
context that has imported the fact.

69 This will result in a warning message. It is better to avoid this situation by renaming facts if possible.

Coding with yscript Chapter 4 60

Consider the example:

THING the entity

CONTEXT Modern Slavery Act 2018 (Cth)

FACT the entity carried on business in Australia FROM Corporations Act 2001
TRANSLATE true AS the entity carried on business in Australia under section
21 of the Corporations Act 2001
TRANSLATE false AS the entity did not carry-on business in Australia under
section 21 of the Corporations Act 2001

RULE Section 5(2) PROVIDES
the entity carried on business in Australia during the reporting period
ONLY IF
 the entity was a body corporate during the reporting period AND
 the entity carried on business in Australia

CONTEXT Corporations Act 2001

RULE Section 21 PROVIDES
the entity carried on business in Australia ONLY IF
 section 21(1) applies OR
 section 21(2) applies

RULE Corporations Act 2001 Section 21(1) PROVIDES
section 21(1) applies ONLY IF
 the entity has a place of business in Australia, or in a State
 or Territory

In this example, we declare two contexts: one for material relating to the Modern
Slavery Act 2018 (Cth) and another for the Corporations Act 2001. The named subject -
the entity, is declared in the shared context and so is available in both other defined
contexts. The first of these Acts relies on the other for a defined term – the entity
carried on business in Australia. The Modern Slavery Act (Cth) context specifically
imports this fact making it shared between the two contexts. The rest of the facts have
their own separate name spaces. When executed, the session will go:

 1) What is the name of the entity?
 ** Telstra

 2) Was Telstra a body corporate during the reporting period?
 ** yes

 3) Does Telstra have a place of business in Australia, or in
 a State or Territory?
 ** yes

 REPORT

 Telstra carried on business in Australia during the
 reporting period because it was a body corporate during the
 reporting period and it carried on business in Australia
 under section 21 of the Corporations Act 2001.

 Telstra carried on business in Australia under section 21 of
 the Corporations Act 2001 because section 21(1) applies.
 Section 21(1) applies because Telstra has a place of
 business in Australia, or in a State or Territory.

Chapter 4 Facts 61

Rule and Procedure References

If you want to expressly call70 a rule or procedure from a remote context, you can use
the syntax:

 CALL rule-name FROM context

for example:

 CALL section 23 FROM Corporations Act 2001

Rule, goal and fact names returned via the API do not reflect the context. The name of
link facts should incorporate enough information to identify the fact independently. If
you need to specify the name of a goal and the context is important, you can proceed
the goal pattern with the name of the context followed by two colons, for example:

Modern Slavery Act 2018 (Cth)::section 23

70 The CALL statement is discussed in the following chapter at § 5.6 on page 66.

Chapter 5: Statements

Rules are comprised of one or more statements. These include assignments and IF-THEN-
ELSE control statements. Other statements can be used to perform multi-way branches
(CASE-WHEN), DETERMINE the value of a fact, to specifically CALL a particular rule, to specify
loops (WHILE and REPEAT) and to imperatively output text (SAY).

Multiple statements can be grouped as a single statement by enclosing them with BEGIN
and END.

5.1 Assignments and Assertions

Assignments are used to set the value of a fact. There are two basic types of assignment:
assertions, where a truth (boolean) value is set by asserting a fact in the positive or
negative and regular assignments where any type of fact is explicitly assigned a value.
The assignment syntax is:

[ASSERT] boolean-fact { AND boolean-fact } |
[ASSERT] fact IS | ONLY IF expression

Assertions

To assert a BOOLEAN fact, you simply express the fact in positive or negative form. Where
necessary to separate the assertion from a previous statement, it can be preceded with
the keyword ASSERT. Additional assertions can follow by adding the keyword AND then
further assertions. For example:

section 123 applies

section 123 does not apply

the testator died intestate AND
the estate will be distributed according to the rules of intestacy

ASSERT the activity is illegal
ASSERT penalties will apply

Regular Assignments

The IS and ONLY IF operators are used to assign a specific value of an expression to a
fact. The two operators are entirely equivalent, but generally ONLY IF is used for BOOLEAN
assignments and IS for everything else. Some examples:

the applicant meets the requirements of section 49 ONLY IF
 section 49(1) is satisfied AND
 section 49(2) is satisfied

ASSERT the date of the agreement IS 31 January 2020

ASSERT the value of the estate IS £200,000 MINUS the cost of taxes

Coding with yscript Chapter 5 64

One of the side-effects of assignments is that they associate facts that are used to
calculate the assigned value, as reasons for how the value of the target fact was
determined. Internally, this information is stored as a how list for each fact. A fact can
never be a justification for itself, and self-references are excluded from ever being
added to how list for a fact.

5.2 IF-THEN-ELSE Statement

IF-THEN-ELSE statements provide for conditional evaluation of other statements. The
syntax is:

IF expression THEN statement [ELSE statement]

Where expression is true, then the first statement is executed, otherwise (if present) the
second statement following the ELSE is executed. For example:

IF the entity fails to comply with a request under section 16A THEN
the Minister may publish the identity of the entity AND
the Minister may publish the identities of all entities included by a
joint modern slavery statement

IF the deadline for submission has been extended THEN
 the last day for submission IS
 the last day of the financial year PLUS 9 months
ELSE
 the last day for submission IS

 the last day of the financial year PLUS 3 months

IF-THEN-ELSE statements can be joined together to test for a range of conditions. For
example:

IF the name of the entity EQUALS "DFAT" THEN
 the entity is a commonwealth government department
ELSE IF the name of the entity EQUALS "Telstra" THEN
 the entity is a public company
ELSE
 nothing much is known about the nature of the entity

BEGIN-END pairs can also be used to make the meaning and function of nested IF-THEN-
ELSE statements clearer.

For example:

IF section 16(1) applies THEN BEGIN
 IF the exemption in section 16(2) applies THEN
 there is not a breach of section 16
END ELSE
 section 16 does not apply

5.3 CASE-WHEN Statement

The CASE-WHEN statement is a multi-way branch statement which compares the value of
a fact against one or more constants.

Chapter 5 Statements 65

The syntax is:

CASE fact-name71 { WHEN constant-value | DEFAULT [THEN] statement }

The value of the fact referred to by fact-name is compared against each of the specified
constant values. The first statement associated with a constant value which matches
the fact value is executed. If no constant matches the fact value, then the statement
associated with the DEFAULT instance is executed. The DEFAULT instance must be the last
condition in a CASE statement.

Where fact-name refers to a fact of type STRING72 and there is no default condition, the
range of the fact will be restricted to these values. For example:

CASE you would like to immigrate
 WHEN "yes" THEN you should apply for an immigration visa
 WHEN "no" THEN CALL you should apply for a visitor visa
 WHEN "maybe" THEN CALL you should get advice about an appropriate visa

will result in the automatic declaration:

STRING FACT you would like to immigrate
RANGE "yes"
RANGE "no"
RANGE "maybe"

and result in a multi-choice question when executed:

Would you like to immigrate?
(a) yes
(b) no
(c) maybe

Please select:
**

5.4 WHILE-DO Statement

WHILE-DO statements allow for a statement to be executed whilst an expression is true.
The syntax is:

WHILE expression DO statement

The statement is inherently procedural and is seldom used unless you are attempting
to use yscript as a general-purpose programming language.73 To illustrate what is
possible, the following example will calculate the value of the mathematical constant
Pi:

71 Where a CASE-WHEN statement immediately follows the declaration of a fact (that is when the fact is an object),
then CASE fact-name may be omitted. See § 6.8 at page 78 below.
72 If the type is not declared, then the fact’s type will be implicitly declared as STRING.
73 See § 6.7 below for a discussion of the limitations on loops.

Coding with yscript Chapter 5 66

 // Calculate the value of Pi

SYSTEM NUMBER i

PROCEDURE Pi PROVIDES
ASSERT i IS 2.0
ASSERT pi IS 3.0
WHILE i LESS THAN 128 DO BEGIN
 pi IS pi PLUS 4 DIVIDED BEGIN
 i TIMES
 BEGIN i PLUS 1 END TIMES
 BEGIN i PLUS 2 END
 END
 i IS i PLUS 2
 ASSERT pi IS pi MINUS 4 DIVIDED BEGIN
 i TIMES
 BEGIN i PLUS 1 END TIMES
 BEGIN i PLUS 2 END
 END
 i IS i PLUS 2
 SAY Pi is <pi>.
END

5.5 REPEAT-UNTIL Statement

The REPEAT-UNTIL statement executes a set of one or more statements until an
expression is true. Its syntax is:

REPEAT statements UNTIL expression

Again, this is used infrequently in practice, but there is room for an example:

// Using yscript as a general-purpose programming language
//
// (aka "how not to use yscript" :-)
//

PROCEDURE main PROVIDES
CALL Squares

SYSTEM INTEGER x
SYSTEM INTEGER x2
SYSTEM INTEGER the largest number to show squares for

PROCEDURE Squares PROVIDES
x IS 1
REPEAT
 ASSERT x2 IS x TIMES x
 SAY {x} squared is {x2}
 ASSERT x IS x PLUS 1
UNTIL x IS GREATER THAN the largest number to show squares for

5.6 CALL / SUBRULE Statement

The CALL statement allows rules and procedures to be invoked explicitly. The syntax is:

CALL | SUBRULE [GOAL] rule-name [FROM context]

The statements for the named rule or procedure will be executed and control will be
returned to the next statement. The CALL statement is procedural and should be used

Chapter 5 Statements 67

with care.74 Where it is more natural, the CALL keyword can be replaced by SUBRULE.
Where the GOAL keyword is specified, the specified rule will become the current goal.

Where a rule is not in the current context or the shared context, you can still call it by
specifying the context using the FROM context syntax.

For example:

RULE Section 45 PROVIDES
SUBRULE Section 45(1)
SUBRULE Section 45(2)
SUBRULE Section 45(3)

5.7 NEXT Statement

The NEXT statement is the same as the CALL statement but is does not return. When the
rule or procedure completes, the session finishes. The syntax is:

NEXT [GOAL] rule-name [FROM context]

For example:

DOCUMENT Non-Disclosure Agreement PROVIDES
CALL Preamble
IF the agreement is unilateral THEN
 NEXT Unilateral Agreement
ELSE
 NEXT Multi-party Agreement

5.8 DETERMINE Statement

The DETERMINE statement causes the value of a fact to be determined, that is the fact
becomes the current goal fact. The syntax is:

DETERMINE [IF] fact

Unless you are intentionally writing imperative code, the use of this statement is
probably best confined to goal rules. Otherwise, if facts are forgotten or if the system
otherwise must recalculate everything, it may lead to unanticipated results.

One of the uses of including DETERMINE in a goal rule is that it has the effect of adding
the fact to list of those that will be reported on. Reports are discussed in § 6.4.

74 See § 6.7 Writing Procedural Code below.

Coding with yscript Chapter 5 68

An example:

GOAL RULE Competition and Consumer Act 2010 Section 52F - Application for
registration of news business and news business corporation PROVIDES
DETERMINE the News Business Corporation may apply to the ACMA for
 Registration of the news business under section 52F(1)(a)
DETERMINE the News Business Corporation may apply to the ACMA for
 registration of the News Business Corporation under section 52F(1)(b)
DETERMINE the News Business Corporation may apply to the ACMA for
 endorsement of the News Business Corporation as the registered news
 business corporation for the news business under section 52F(1)(c)

5.9 FORGET Statement

The FORGET statement causes the value of facts to be forgotten. The syntax is:

FORGET ALL | fact-name

Where followed by the keyword ALL, all fact values will be cleared, and the session
will restart.

Where a fact-name is specified, the value for this fact and all facts that were
subsequently determined or provided by the user after this fact will be set to UNKNOWN.
See §6.7 Writing Procedure Code below for examples of how FORGET should be used.

An example:

RULE Contracts Formation PROVIDES
a contract has been formed ONLY IF
 there has been an offer AND
 the offer has been accepted AND
 there is consideration
IF you have made any mistakes THEN
 FORGET ALL

5.10 SAY Statement

The SAY statement sends a text message which will be displayed the next time that the
controlling environment asks the user a question. The syntax is:

SAY text

for example:

SAY "Hello, World"

The statement is procedural and particularly if included in backward or forward-
chaining rules will produce a lot of unwanted text. Even in procedural code, it will be
invoked repeatedly as the system rebuilds between user questions. See § 4.14
Explanations for a mechanism to attach text to facts which is more controllable.

Chapter 5 Statements 69

Normally, the SAY statement is only useful for debugging. Consider the following
example:

RULE Giants PROVIDES
SAY "Fee"
IF you heard that THEN BEGIN
 SAY "Fi"
 IF you heard another sound THEN BEGIN
 SAY "Fo"
 IF it sounds like a giant is coming THEN BEGIN
 SAY "Fum"
 SAY "It is definitely a giant!"
 END
 END
END

This code will produce the following result when executed:

 1) Did you hear that?
 ** y

 Fee
 Fi

 2) Did you hear another sound?
 ** y

 Fee
 Fi
 Fo

 3) Does it sound like a giant is coming?
 ** y

 Fee
 Fi
 Fo
 Fum
 It is definitely a giant!

5.11 EXIT Statement

The EXIT statement terminates a session. The syntax is:

EXIT [SESSION]

Without the SESSION argument, the statement will case the interpreter to terminate.
With the SESSION argument, control will return to the calling environment. If you want
to restart a session, use FORGET ALL.

Coding with yscript Chapter 5 70

5.12 INCLUDE Directive

The INCLUDE directive can be used to include the contents of another file75 as part of the
source. This is useful for organising large pieces of code and possibly for assisting with
collaboration.76 It can be used within a rule as a statement or outside rules as a
declaration.

The syntax is:

INCLUDE filename

For example, where the file interpretation.ys includes some standard interpretation
provisions such as:

// interpretation.ys

RULE Persons PROVIDES
IF the party is a company THEN
 the party is not a person
IF the party is a person THEN BEGIN
 the party is not a company AND
 the party is not a partnership

it could be included as:

INCLUDE "interpretation.ys"

RULE Section 56 PROVIDES
Section 57 applies ONLY IF
 the party is a company

75 The DataLex environment extends INCLUDE to allow for URLs.
76 Specifying multiple files when running code is probably more flexible.

Chapter 6: Rules

Statements are contained in rules. There must be at least one rule in any piece of yscript
code. 77 Execution commences with the goal rule.78

6.1 Default Rule Behaviour

Once the goal rule has started execution (or has been fired), the rule statements are
executed in order. By default, if a fact value is required as part of an expression for an
assignment or as a condition for a control statement (such as IF), yscript will fire each
of the rules in the code that potentially can determine a value for the fact until a value
is available.79 If a value can’t be determined, the user will be prompted to provide one.
If a value is found, each of the rules in code that make use of the fact with the newly
determined value are fired but will block if a user response is ever required.

The default behaviour of rules in yscript can hence be said to be goal oriented or
backward chaining. The behaviour is also forward chaining in the sense that rules will be
used to determine every possible fact value that can be reached given the current facts
which are known.80 This behaviour can be altered by changing the rule type.

6.2 Rule Declarations and Types

A rule declaration consists of a rule header followed by one or more statements. The
rule header contains an optional GOAL qualifier, a rule type, and an optional rule name.
This is followed by the keyword PROVIDES and then the statements that make up the
rule.

The syntax is:

[GOAL] rule-type [RULE] [rule-name] PROVIDES statements

where rule-type is one of:

BACKWARD|DAEMON|DOCUMENT|FORWARD|PROCEDURE|RULE

77 This includes an object which is essentially a fact with statements. See § 6.8 at page 78.
78 Goal rules are discussed in § 6.3 at page 72.
79 When backward chaining, the system keeps track of which rules are already being evaluated. If a rule ever
becomes reliant upon itself (directly or indirectly), the rule will block and consideration will move to the next
available rule (if any).
80 Another way of putting this is that the default rule type is BACKWARD chaining but that it also operates as a
forward-chaining DAEMON.

Coding with yscript Chapter 6 72

For example:

RULE Common-sense about companies PROVIDES
IF the client is a company THEN
 the client is not a person

The rule name is optional, but it is strongly recommended that you include rule names
as these are used to select goals and rules to be CALLED as well as for describing what
the system is doing and why it is doing it. Rule names are in a different namespace
from fact names.

You can change the way that rules are used, by declaring with a type other than just
RULE. The following additional rule types are available:

Backward Rules

A rule that is declared to be BACKWARD will only ever backward chain, that is it will not
be used to determine fact values except in a strictly goal driven fashion. This will have
the effect of stopping conclusions being made that are strictly unnecessary.

Forward Rules

A rule that is declared to be FORWARD will be fired whenever the value of a fact that it
uses becomes known. Forward rules are not used for backward chaining.

Daemons

A DAEMON is fired whenever a fact that it uses becomes known. Unlike a FORWARD rule, a
DAEMON operates silently and will never cause a question to be asked of the user.
Daemons are not used when backward chaining.

Procedures

PROCEDUREs are not used to determine any fact values unless they are specifically called
with a CALL or NEXT statement.

Document Rules

DOCUMENT rules are used for document assembly which is discussed in Chapter 8:
Document Assembly. They are like procedures but allow additional statements for
generating text to be included in documents.

6.3 Goal Rules

If there is only one rule, or no goal rules are explicitly specified, then the goal rule will
be the first rule that is declared. Goal rules can be declared by including the qualifier
GOAL before the rule declaration.

Chapter 6 Rules 73

For example, the goal rule for the Modern Slavery application is:

GOAL RULE Modern Slavery Act 2018 (Cth)

If only one goal rule is declared, this will be used in place of the first rule to start
execution. If there is more than one goal rule, the user will be asked to select which
goal rule they wish to use.

For example:

The following goals are defined:

1) Community Gaming Regulation 2020 Regulation 4 - Art union
 gaming activities
2) Community Gaming Regulation 2020 Regulation 5 - Housie or bingo
3) Community Gaming Regulation 2020 Regulation 6 – Draw lotteries
4) Community Gaming Regulation 2020 Regulation 7 - No-draw lotteries
5) Community Gaming Regulation 2020 Regulation 8 - Mini-numbers
 lotteries
6) Community Gaming Regulation 2020 Regulation 9 - Progressive
 lotteries
7) Community Gaming Regulation 2020 Regulation 10 – Free lotteries
8) Community Gaming Regulation 2020 Regulation 11 – Promotional
 raffles conducted by registered clubs
9) Community Gaming Regulation 2020 Regulation 12 - Other
 gaming activities for charitable purposes
10) Community Gaming Regulation 2020 Regulation 13 - Sweeps and
 calcuttas
11) Community Gaming Regulation 2020 Regulation 14 – Trade promotion
 gaming activities

Please select a goal?

 **

6.4 Reports

Apart from being important in specifying a starting point, goal rules also have a direct
effect upon reports. By default,81 a report is generated at the end of each user session
and is designed to give a summary of the outcomes and the reasons for them. All facts
that are assigned a value or that are the subject of a DETERMINE statement in the goal
rule are included in the final report. The report will include an explanation as to how
each of these facts was determined and will go on to recursively explain each of sub-
conclusions necessary to support this explanation.

81 This behaviour can be changed by using attachments. See § 8.6 at page 97.

Coding with yscript Chapter 6 74

For example:

AustLII Bingo is not permitted "housie" or "bingo" under
regulation 5 because: it is not Charity housie under
regulation 5(2); it is not Social housie under regulation
5(3); and it is not Club bingo under regulation 5(4).

AustLII Bingo is not Charity housie under regulation 5(2)
because regulation 5(2)(c) is not satisfied. Regulation
5(2)(c) is not satisfied because the total value of the
expenses of conducting AustLII Bingo (excluding the cost of
prizes) is more than 12.5% of the gross proceeds of the
gaming activity. The total value of the expenses of
conducting AustLII Bingo (excluding the cost of prizes) is
more than 12.5% of the gross proceeds of the gaming activity
because the total value of the expenses of conducting it
(excluding the cost of prizes) is $1,000 and the amount of
the gross proceeds of AustLII Bingo are $5,000.

If you want to include a fact that would otherwise not be included, use DETERMINE in
the goal rule. If you want to exclude a fact from the report, use the UNREPORTED qualifier
when the fact is declared.

Where the goal rule does not determine the value of any facts, the report will explain
all determined facts in reverse order to that in which they were determined.

6.5 Rule Order

When more than one rule can potentially help to determine the value for a fact, yscript
will normally fire each rule in the order that they were declared, that is earlier rules in
earlier files will go first. If you wish to change the order in which rules are evaluated,
you can simply re-order them. The disadvantage of this approach is that it might mean
that rule order is no longer reflective of a source rule set.

The order in which rules are fired can be explicitly set with the ORDER statement. The
syntax is:

ORDER rule-name { THEN rule-name }

For example:

ORDER Section 23 THEN Section 3 THEN Section 10

6.6 Generic Rules

Generic rules allow for the declaration of rule templates which have a similar form but
match a number of different sets of facts. The aim of generic rules is to save you having
to rewrite essentially the same rule but with facts with slightly different names.

Within generic rules, facts may contain a variable element which is indicated by an
empty pair of curly brackets. Prior to executing the code, yscript will automatically
produce a new rule for each fact that it can find matching the specified pattern in the

Chapter 6 Rules 75

rule template. The variable part of a fact name represented by {} must be the same in
all facts in the rule. For example, the Copyright Act 1968 (Cth) contains a definition of
“qualified person” in section 32(4) which can apply at “the time that the work was
made” or “at the time the work was first published”.82

The following generic rule will deal with all these facts:

RULE Copyright Act 1968 - Section 32(4) PROVIDES
 the author was a "qualified person" {} under the section 32(4)
 definition ONLY IF
 the author was an Australian citizen {} OR
 the author was an Australian protected person {} OR
 the author was a person resident in Australia {}

It is equivalent to writing two rules:

RULE Copyright Act 1968 - Section 32(4) PROVIDES
 the author was a "qualified person" at the time that the work was
 made under the section 32(4) definition ONLY IF
 the author was an Australian citizen at the time that the work
 was made OR
 the author was an Australian protected person at the time that
 the work was made OR
 the author was a person resident in Australia at the time that
 the work was made

RULE Copyright Act 1968 - Section 32(4) PROVIDES
 the author was a "qualified person" at the time the work was first
 published under the section 32(4) definition ONLY IF
 the author was an Australian citizen at the time the work was
 first published OR
 the author was an Australian protected person at the time the
 work was first published OR
 the author was a person resident in Australia at the time the
 work was first published

6.7 Writing Procedural Code

This section provides a slightly technical explanation of some issues relating to writing
procedural code in yscript.

By its nature, yscript is a declarative language. The order of execution is normally
driven by goal-directed backward chaining or result-directed forward firing of rules.
Rules and expressions themselves, however, are imperative. Statements in rules are
executed sequentially, and facts and constants in expressions are evaluated according
to operator precedence then are evaluated left to right.

When an expression is being evaluated, each reference to an uninitialised fact may
result in a rule firing to attempt to derive a value, or in a question being asked of the
user. The rules engine will block attempts by rules to invoke themselves to stop loops
and infinite recursion. Each time a question is asked, control returns to the calling
environment. When control passes back to the yscript interpreter, the rules are re-

82 There are also several other forms contained in the Act such as: s32(1)(b) for a substantial part of the period of the
making of the work; and s32(2)(e) immediately before the author's death.

Coding with yscript Chapter 6 76

executed from the starting rule to re-establish the current state and to use any new
information that has been provided.

yscript includes several statements which facilitate procedural programming. These
include control statements such as WHILE-DO and REPEAT-UNTIL, as well as the CALL and
NEXT statements which will specifically invoke a particular rule. The language also
includes the FORGET statement which will de-initialise the value of a fact and all facts
that were subsequently determined.

Most of the time, procedural code will execute as in any other imperative computer
language. The main exceptions to this are when a rule directly or indirectly invokes
itself via CALL or NEXT or where a WHILE-DO or REPEAT-UNTIL loop relies on a fact that needs
to be re-initialised on each iteration of the loop.

Consider the latter case first. The following code will run as expected because it does
not rely upon any interaction with the end-user (that is, no questions are asked):

ASSERT count IS 1
WHILE count LESS THAN 10 DO
 ASSERT count IS count PLUS 1

In this example, the fact – count, is first initialised to 1 and remains initialised
throughout the execution of the while loop until it reaches the value of 10.

Consider the following example however:

WHILE you wish to continue DO // incorrect
 SAY do something

This will cause the user to be asked the question: “Do you wish to continue?”. If the user
answers “no”, control will continue after the statement. If the user answers “yes”, this
will produce an infinite loop.83

An incorrect way of trying to address this would be to insert a FORGET statement before
the loop as in:

FORGET you wish to continue // incorrect
WHILE you wish to continue DO
 SAY do something

This example will not work and will result in the question “Do you wish to continue?”
being asked indefinitely. Each time that the value of “you wish to continue” is
forgotten, the interpreter will pass control back to the calling environment to ask the
user for a value and then when restarted, will forget the value again.

83 The infinite loop will be picked up by the interpreter and it will issue a fatal error message: maximum recursion
level reached.

Chapter 6 Rules 77

The correct way to write this code is to make sure that any FORGET statement comes
after a reference to the fact to which it refers:

WHILE you wish to continue DO BEGIN
 SAY do something
 FORGET you wish to continue
END

In this case, the WHILE loop never actually iterates. When the value of “you wish to
continue” is forgotten, the system restarts and stops when it encounters the reference
to it in the guard for the loop. Arguably, the code is better written as:

IF you wish to continue THEN BEGIN
 SAY do something
 FORGET you wish to continue
END

In the same way that the interpreter’s rules engine will block backward-chaining rules
from calling themselves, attempts to CALL a rule, or pass control via NEXT to a rule, that
is already on the rules stack will also be blocked. When a CALL or NEXT statement
attempts to execute a rule that is already being executed, the interpreter will
automatically call FORGET to bring the system back to the state that it was in when the
rule was originally called. The effect of this is that it is always safe to use CALL or NEXT
to invoke any rule, and if necessary, the system will backtrack to produce a sensible
result.

Consider, for example, the following code:

PROCEDURE Options PROVIDES
CASE your preferred option
 WHEN "option 1" CALL Option 1
 WHEN "option 2" CALL Option 2

PROCEDURE Option 1 PROVIDES
SAY "Something about option 1"
FORGET your preferred option

PROCEDURE Option 2 PROVIDES
SAY "Something about option 2"
CALL Options

The aim of the code is to present the user with two options, call a procedure based on
their answer and then ask for another option. The approach set out in “Option 1” is
like that discussed above in relation to WHILE-DO loops. The “Option 1” procedure does
what it needs to and then the call to FORGET will forget the value of “your preferred
option”, and the question “What is your preferred option?” will be asked.

“Option 2” will also work. When the user selects “option 2”, the procedure “Option 2”
is executed and the SAY message “Something about option 2” is sent to the message queue
for display the next time the calling environment gets control and asks the user a
question. When the CALL to “Options” is made, this will be blocked because the
“Options” procedure is already on the goal rule stack. Instead, the interpreter will
FORGET the value of “your preferred option” and only then do the CALL to “Options”
(again, producing the question “What is your preferred option?”.

Coding with yscript Chapter 6 78

You can see what is happening, by putting cyscript into verbose mode:

* FIRING Options
 1) What is your preferred option?
 (a) option 1
 (b) option 2
 Please select?
 ** b

 * DETERMINED VALUE FOR your preferred option
 * FIRING Options
 * BLOCKED Options
 * FORGOT your preferred option
 Something about option 2

 1) What is your preferred option?
 (a) option 1
 (b) option 2
 Please select?
 **

6.8 Rules as Objects

The namespace for rule names and facts is different and it is possible to declare a rule
and a fact with the same name. When this is done, a fact effectively becomes a very
simple object in the sense that it can hold a value and that it also has associated code.

To provide a convenient way to write procedural code to implement decision-trees
and chatbots, yscript provides for a short-form way of associating a procedure with a
fact. Fact declarations may be followed by a set of statements which will form a
procedure with the same name. For example:

FACT it is raining
WHEN true NEXT take an umbrella
WHEN false NEXT it looks like it might rain

is equivalent to:

FACT it is raining

PROCEDURE it is raining PROVIDES
CASE it is raining
 WHEN true NEXT take an umbrella
 WHEN false NEXT it looks like it might rain

Where a CASE-WHEN statement immediately follows a fact declaration, the “CASE fact-
name” part of the statement can be omitted, and the fact name will be used instead.

When implementing decision-trees, it is common to ask a question and then to branch
depending upon a response. Permitting the CASE part of the CASE-WHEN statement is a
convenience to reduce code repetition and to make the code more compact.

Chapter 6 Rules 79

The following example illustrates how a simple decision-tree can be implemented
using the object syntax:

FACT there has been an offer
WHEN true NEXT the offer has been accepted
WHEN false THEN a contract has not been formed

FACT the offer has been accepted
WHEN true NEXT there is consideration
WHEN false THEN a contract has not been formed

FACT there is consideration
WHEN true THEN a contract has been formed
WHEN false THEN a contract has not been formed

This will result in the session:

 1) Has there been an offer?
 ** y

 2) Has the offer been accepted?
 ** y

 3) Is there consideration?
 ** y

 A contract has been formed because: there has been an offer;
 the offer has been accepted; and there is consideration.

Chapter 7: Examples

Apart from the rule-based approaches outlined above, yscript also supports simple
analogous reasoning. This is based on a method of measuring similarity of examples
called PANNDA, developed by Alan Tyree and described in his book Expert Systems
in Law, Prentice Hall, 1990. The method is designed to support case-based reasoning
in law but may be of application in other domains.

7.1 Example Declarations

When yscript is trying to infer a value for a fact and no further rules can be found to
assist, it will look to see if the fact is contained in an example set. The syntax to declare
an EXAMPLE is:

[GOAL] EXAMPLE [RULE] name PROVIDES [IF expression THEN] assignment

The expression component of either the IF guard or the assignment itself, should consist
of a number of relative expressions separated by an AND operator. Each relative
expression (normally just a fact name) should represent one significant facet of the
example. The OR connector should not generally be used. The following example
comes from the finding of chattels code:

EXAMPLE Armory v Delamirie PROVIDES
 the finder wins ONLY IF
 the finder was not the occupier of the premises AND
 the chattel was not attached AND
 the non-finder was not the owner of the real estate AND
 the non-finder was not the owner of the chattel AND
 there was a bailment of the chattel AND
 there was not a term in a lease which mentioned found items AND
 there was not a master-servant relationship between the parties AND
 the chattel was not hidden AND
 there was not an attempt to find the true owner of the chattel AND
 there was prior knowledge of the existence of the chattel

The IF-THEN form of the declaration should only be used where the fact about which
the example relates is non-boolean.

It is important that each example is sensibly named. The name is used to construct
three automatic facts of the form:

the situation is similar to name
the situation is on all-fours with name
name can be distinguished

7.2 Example Evaluation

When the system is about to attempt to infer a value for a fact using an example set, it
first finds all examples which relate to it (that is, all examples where the fact appears

Coding with yscript Chapter 7 82

as the target of an assignment). It then infers (or asks the user for) a value for all facts
used in the examples. Finally, it compares each example with the situation described
by these fact values and finds the nearest and furthest example. The furthest example
is the one with the closest facts but giving a different result to the nearest one.

The target fact is set to the same value as the nearest example. The similar or all-fours
fact for the nearest example is set to true. If the example is not on all fours, the
distinguished fact is also set for the furthest case. All facts (including the target fact
itself) receive sensible explanatory associations (for how/reporting). Not all possible
supporting facts are used for explanations. Rather, only significant ones are reported
(significant facts are those which tend to, in themselves, divide the example set or in
this instance have unusual values).

The underlying mechanism used to handle analogous reasoning is based on Tyree’s
PANNDA algorithm (where each matching fact is weighted according to how poorly
it divides the example set as measured by its inverse variance). This approach has also
been extended in several minor respects:

1. The original PANNDA algorithm dealt only in boolean facts and outcomes.
There has never really been any good reason why the outcomes had to be
boolean (they are not used in determining which case to follow or distinguish).
Accordingly, this restriction has been dropped in the yscript implementation.

2. yscript also supports non-boolean facts. The variance for each of these is
calculated in the context of the present fact value and so care should be taken
with use of equality operators. These should only be used where the fact can
only take one of a discrete number of values.

3. It is not necessary that each example contains all attributes used in other
examples. This feature can be used to generalise the effect of an example. The
missing attributes become, in effect, wild. Such examples, are, of course, much
easier to match. Again, caution is called for.

7.3 Finders Example

This is the complete finding of chattels example which uses the cases from the original
PANNDA Finders code:

Chapter 7 Examples 83

EXAMPLE Armory v Delamirie PROVIDES
the finder wins ONLY IF
 the finder was not the occupier of the premises AND
 the chattel was not attached AND
 the non-finder was not the owner of the real estate AND
 the non-finder was not the owner of the chattel AND
 there was a bailment of the chattel AND
 there was not a term in a lease which mentioned found items AND
 there was not a master-servant relationship between the
 parties AND
 the chattel was not hidden AND
 there was not an attempt to find the true owner of the
 chattel AND
 there was prior knowledge of the existence of the chattel

EXAMPLE Bridges v Hawkesworth PROVIDES
the finder wins ONLY IF
 the finder was not the occupier of the premises AND
 the chattel was not attached AND
 the non-finder was the owner of the real estate AND
 the non-finder was not the owner of the chattel AND
 there was a bailment of the chattel AND
 there was not a term in a lease which mentioned found items AND
 there was not a master-servant relationship between the
 parties AND
 the chattel was not hidden AND
 there was an attempt to find the true owner of the chattel AND
 there was not prior knowledge of the existence of the chattel

EXAMPLE Elwes v Brigg Gas PROVIDES
the finder does not win ONLY IF
 the finder was the occupier of the premises AND
 the chattel was attached AND
 the non-finder was the owner of the real estate AND
 the non-finder was not the owner of the chattel AND
 there was not a bailment of the chattel AND
 there was a term in a lease which mentioned found items AND
 there was not a master-servant relationship between the
 parties AND
 the chattel was hidden AND
 there was an attempt to find the true owner of the chattel AND
 there was not prior knowledge of the existence of the chattel

EXAMPLE Hannah v Peel PROVIDES
the finder wins ONLY IF
 the finder was not the occupier of the premises AND
 the chattel was not attached AND
 the non-finder was the owner of the real estate AND
 the non-finder was not the owner of the chattel AND
 there was not a bailment of the chattel AND
 there was not a term in a lease which mentioned found items AND
 there was not a master-servant relationship between the
 parties AND
 the chattel was hidden AND
 there was an attempt to find the true owner of the chattel AND
 there was not prior knowledge of the existence of the chattel

EXAMPLE Corporation of London v Yorkwin PROVIDES
the finder does not win ONLY IF
 the finder was the occupier of the premises AND
 the chattel was attached AND
 the non-finder was the owner of the real estate AND
 the non-finder was not the owner of the chattel AND
 there was a bailment of the chattel AND
 there was a term in a lease which mentioned found items AND
 there was not a master-servant relationship between the

Coding with yscript Chapter 7 84

 parties AND
 the chattel was hidden AND
 there was an attempt to find the true owner of the chattel AND
 there was not prior knowledge of the existence of the chattel

EXAMPLE Moffatt v Kazana PROVIDES
the finder does not win ONLY IF
 the finder was the occupier of the premises AND
 the chattel was not attached AND
 the non-finder was not the owner of the real estate AND
 the non-finder was the owner of the chattel AND
 there was not a bailment of the chattel AND
 there was not a term in a lease which mentioned found items AND
 there was not a master-servant relationship between the
 parties AND
 the chattel was hidden AND
 there was an attempt to find the true owner of the chattel AND
 there was prior knowledge of the existence of the chattel

EXAMPLE South Staffordshire Water Co v Sharman PROVIDES
the finder does not win ONLY IF
 the finder was not the occupier of the premises AND
 the chattel was attached AND
 the non-finder was the owner of the real estate AND
 the non-finder was not the owner of the chattel AND
 there was not a bailment of the chattel AND
 there was not a term in a lease which mentioned found items AND
 there was a master-servant relationship between the parties AND
 the chattel was hidden AND
 there was an attempt to find the true owner of the chattel AND
 there was not prior knowledge of the existence of the chattel

EXAMPLE Yorkwin v Appleyard PROVIDES
the finder does not win ONLY IF
 the finder was not the occupier of the premises AND
 the chattel was attached AND
 the non-finder was not the owner of the real estate AND
 the non-finder was not the owner of the chattel AND
 there was not a bailment of the chattel AND
 there was not a term in a lease which mentioned found items AND
 there was a master-servant relationship between the parties AND
 the chattel was hidden AND
 there was an attempt to find the true owner of the chattel AND
 there was not prior knowledge of the existence of the chattel

Chapter 7 Examples 85

An example session for the above code is as follows:84

 1) What is the name of the finder?
 ** Alan Parker

 2) Is Alan Parker a person?
 ** yes

 3) What is Alan Parker's preferred gender?
 ** male

 4) What is Alan Parker's preferred form of address?
 ** Mr

 5) Was Mr Parker the occupier of the premises?
 ** no

 6) Was the chattel attached?
 ** no

 7) What is the name of the non-finder?
 ** British Airways

 8) Is British Airways a person?
 ** no

 9) Was British Airways the owner of the real estate?
 ** yes

 10) Was British Airways the owner of the chattel?
 ** no

 11) Was there a bailment of the chattel?
 ** no

 12) Was there a term in a lease which mentioned found items?
 ** no

 13) Was there a master-servant relationship between the parties?
 ** no

 14) Was the chattel hidden?
 ** no

 15) Was there an attempt to find the true owner of the chattel?
 ** yes

 16) Was there prior knowledge of the existence of the chattel?
 ** no

 REPORT

 Mr Parker wins because the situation is similar to Bridges v
 Hawkesworth and South Staffordshire Water Co v Sharman can
 be distinguished.

 The situation is similar to Bridges v Hawkesworth because:
 Mr Parker was not the occupier of the premises; the chattel
 was not attached; British Airways was the owner of the real
 estate; and the chattel was not hidden.

 South Staffordshire Water Co v Sharman can be distinguished
 because the chattel was not attached and there was not a
 master-servant relationship between the parties.

Coding with yscript Chapter 7 86

Chapter 8: Document Assembly

yscript provides two document assembly mechanisms: documents and templates. Using
either approach, documents are generated in imperative fashion but can take
advantage of the rest of yscript to determine what needs to be included or to select an
appropriate document type or format. Documents are generated using statements
which generate text, optionally in Markdown format.85 Templates use yscript fact
values to modify external documents which are generally in word-processing format
such as DOCX.86

When a document has been assembled, it will be displayed at the end of the user
session along with the report. Where there are several documents, these can be
presented as attachments. An attachment is part of a fact declaration that indicates that
a document, template, or report should be made available to the user whenever a
value for the fact is concluded.

8.1 Documents

Documents are generated from rules of the type - DOCUMENT. Document rules are never
automatically invoked and must either by a goal rule or called using a CALL or NEXT
statement. The only difference between a DOCUMENT rule and a PROCEDURE is that
document rules may use the statements - LINE, PARAGRAPH and TEXT to write text to a
document. The LINE statement ends the output line with a new-line and the PARAGRAPH
statement ends the line with two new-lines. The TEXT statement just outputs the raw
text with no new line. The syntax of these statements is:

[NUMBERED] [LEVEL number] [PARAGRAPH|LINE|TEXT] text

where text is an arbitrary piece of text to be output as part of the document being
generated.

For the most part, text will be used literally except that it may contain the values of
facts by including these in curly brackets. If these facts are not used elsewhere, they
will be automatically declared (as type STRING) and if it is not possible to determine a
value for the fact then the system will ask the user. If you want a fact appearing in text
to be of a different type to STRING (including for named subjects) then you need to
formally declare it.

85 Markdown is discussed in § 8.2 at page 91.
86 The type of documents which can be used as templates depends on the template engine. The Jinja2 engine will
work with DOCX and any text format such as RTF, Markdown and TEX. See § 8.7 at page 98.

Coding with yscript Chapter 8 88

For example:

INFORMAL PERSON the testator
DATE the date of execution of the Will

DOCUMENT Preamble PROVIDES
PARAGRAPH This will dated {the date of execution of the Will}
is made by me {the name of the testator}, of {the address of the testator},
{the occupation of the testator}.

will produce the following dialog and output:

 1) What is the date of execution of the Will?
 ** today

 2) What is the name of the testator?
 ** Gloria Huntingdale

 3) What is Gloria Huntingdale's preferred gender?
 ** female

 4) What is the address of Gloria Huntingdale?
 ** One, The Esplanade, Gold Coast, Australia

 5) What is the occupation of Gloria Huntingdale?
 ** Mining Magnate

 This will dated 4th November, 2020 is made by me Gloria
 Huntingdale, of One, The Esplanade, Gold Coast, Australia,
 Mining Magnate.

Including the keyword NUMBERED before a PARAGRAPH, LINE or TEXT statement will number
the paragraph. The LEVEL keyword will control the sub-level of numbering and will
generate Markdown blockquote tags which are discussed in § 8.2.

If you want to include different text depending upon one or more fact values, you can
use IF-THEN statements as in:

DOCUMENT Revocation PROVIDES
IF all former testamentary dispositions are to be revoked THEN
 NUMBERED PARAGRAPH I hereby revoke all former testamentary
 dispositions.

It is generally convenient to use multiple DOCUMENT rules to generate different parts of
a document and then to CALL these as necessary.

Chapter 8 Document Assembly 89

For example:

DOCUMENT Last Will & Testament PROVIDES
 CALL Preamble
 CALL Revocation
 CALL Bequest
 CALL Execution

Following is a complete example of a simple Will generator:

INFORMAL PERSON the testator
STRING the name of the testator
PROMPT what is the name of the person making the Will
DATE the date of execution of the Will
DATE the date of the old Will

GOAL DOCUMENT Last Will & Testament PROVIDES
IF the testator should make a Will THEN BEGIN
 CALL Disclaimer
 CALL Preamble
 CALL Revocation
 CALL Contemplation of Marriage
 CALL Sole Beneficiary
 CALL Attestation
END

DOCUMENT Disclaimer PROVIDES
PARAGRAPH Disclaimer: This is not a real Will and must not be used as such.
This will does not purport to accurately represent the current or past law
of any jurisdictions.

DOCUMENT Preamble PROVIDES
PARAGRAPH This will dated {the date of execution of the Will} is made by me
{the name of the testator}, of {the testator's address},
{the testator's occupation}.

DOCUMENT Revocation PROVIDES
IF all former testamentary dispositions are to be revoked THEN
 NUMBERED PARAGRAPH I revoke all former testamentary dispositions.
ELSE
 NUMBERED PARAGRAPH I revoke all former testamentary dispositions except
 clause(s) {the list of clauses from the old will which are to be saved}
 of my testamentary instrument dated {the date of the old Will} which
 clause(s) I hereby confirm.

DOCUMENT Contemplation of Marriage PROVIDES
IF the Will is to be made in contemplation of marriage THEN BEGIN
 IF the Will is to be conditional on the marriage actually taking place
THEN
 NUMBERED PARAGRAPH This will is made in contemplation of my
 marriage with {the name of the testator's fiancée} and is
 conditional on the marriage taking place within
 {the maximum number of months within which the wedding must
 take place} months.
 ELSE
 NUMBERED PARAGRAPH This will is made in contemplation of my
marriage
 with {the name of the testator's fiancée} but is not conditional on
the
 marriage taking place.
END

Coding with yscript Chapter 8 90

DOCUMENT Sole Beneficiary PROVIDES
IF everything disposed of under the Will is to be left one person THEN
BEGIN
 IF the sole beneficiary is over 18 THEN
 NUMBERED PARAGRAPH I give the whole of my estate to
 {the name of the sole beneficiary} whom I appoint my sole executor.
 ELSE BEGIN
 NUMBERED PARAGRAPH I give the whole of my estate to
 {the name of the sole beneficiary}.
 NUMBERED PARAGRAPH I appoint {name of the executor and trustee} as
 my sole executor and sole trustee of my estate.
 END
END ELSE BEGIN
 NUMBERED PARAGRAPH I give the whole of my estate in equal shares to
 {the names of the joint beneficiaries}.
 NUMBERED PARAGRAPH I appoint the {the name of the executor} as my
 sole executor.
END

DOCUMENT Attestation PROVIDES
PARAGRAPH SIGNED by the testator in our presence and attested by us in the
presence of the testator and each other.

To sort out the issue as to whether a person should make a Will at all, you could add:

RULE Power to Make a Will PROVIDES
the testator should make a will ONLY IF
 the testator is over 18 years of age AND
 there is not any doubt about the testator's mental capacity to make a
 Will AND/OR
 the test set out in Banks v Goodfellow is met AND/OR
 the Will is to be approved by the Supreme Court under section 18 of the
 Succession Act 2006 OR
 the testator is not over 18 years of age AND
 the Will is to be made in contemplation of marriage AND
 there is not any doubt about the testator's mental capacity to make a
 Will AND/OR
 the test set out in Banks v Goodfellow is met OR
 the testator is not over 18 years of age AND
 the Will is to be approved by the Supreme Court under section 16 of the
 Succession Act 2006

RULE The Test in Banks v Goodfellow PROVIDES
the test set out in Banks v Goodfellow is met ONLY IF
 the testator can appreciate the effect of making a will AND
 the testator can recall the assets that make up the testator's estate
AND
 the testator can comprehend that there are people who are entitled to
 provisions from the deceased estate AND
 the testator does not suffer from a disorder that stops the testator
 from making rational decisions about the distribution of the testator's

Chapter 8 Document Assembly 91

When run, the following consultation will result:

 1) What is the name of the person making the Will?
 ** George Brown

 2) What is George Brown's preferred gender?
 ** m

 3) Is he over 18 years of age?
 ** y

 4) Is there any doubt about his mental capacity to make a Will?
 ** n

 5) What is the date of execution of the Will?
 ** today

 6) What is George Brown's address?
 ** 34 Pitt Street, Sydney

 7) What is his occupation?
 ** Nurse

 8) Are all former testamentary dispositions to be revoked?
 ** y

 9) Is the Will to be made in contemplation of marriage?
 ** n

 10) Is everything disposed of under the Will to be left one person?
 ** y

 11) Is the sole beneficiary over 18?
 ** y

 12) What is the name of the sole beneficiary?
 ** Daisy Brown

The generated document will be:

 Disclaimer: This is not a real Will and must not be used as
 such. This Will does not purport to accurately represent the
 current or past law of any jurisdictions.

 This Will dated 20th June, 2021 is made by me George Brown,
 of 34 Pitt Street, Sydney, Nurse.

 1. I revoke all former testamentary dispositions.

 2. I give the whole of my estate to Daisy Brown whom I
 appoint my sole executor.

 SIGNED by the testator in our presence and attested by us in
 the presence of the testator and each other.

8.2 Markdown

Markdown is a lightweight text mark-up language which allows for simple text
formatting. It was originally developed by John Gruber and Aaron Swartz in 2004 as
a way of making documents "publishable as-is, as plain text, without looking like it's

Coding with yscript Chapter 8 92

been marked up with tags or formatting instructions".87 A central aim is that text
marked up in Markdown should remain humanly readable whilst being able to be
converted into other formats.

yscript uses Markdown for all text blocks such as explanations, SAY statements and
document output. You can use it to introduce basic formatting into documents. The
following illustrates some of the basic Markdown elements:

Introduction to Markdown
========================

Paragraphs consist of one or more lines of text that
are separated by blank lines.

Headings can be underlined as above or begin with between one and six
hashes to indicate the heading level.

Lists can be numbered or bulleted:
1. Numbered lists start with digits then a dot then a space;
2. Other list items continue. Words can be in *italics* or **bold**;
3. Until you are finished the list.

* Bullet lists are similar
* With items preceded by a star or a dash
> Blockquotes are preceded by a greater than.
> Like this. And can be nested:
>> Like this nested blockquote.

When rendered, this will look like:

Introduction to Markdown

Paragraphs consist of one or more lines of text that are separated by blank lines.

Headings can be underlined as above or begin with between one and six hashes to indicate the
heading level.

Lists can be numbered or bulleted:

1. Numbered lists start with digits then a dot then a space;
2. Other list items continue. Words can be in italics or bold;
3. Until you are finished the list.

• Bullet lists are similar
• With items preceded by a star or a dash

Blockquotes are preceded by a greater than. Like this. And can be nested:

Like this nested blockquote.

8.3 Including Markdown Text in yscript Code

Markdown text is inherently line-based. When including Markdown text in yscript
code, you may still indent it with spaces or tabs to represent the format or control flow
of the yscript code. Any left indent that follows the first newline in the block will

87 John Grubber, Markdown < https://daringfireball.net/projects/markdown/>.

Chapter 8 Document Assembly 93

conceptually become a left margin for Markdown purposes. The first non-space
character on this and subsequent lines in the text block will be treated as though this
is the first character on the line.

For example, in the following code:

IF the sky is blue THEN
 PARAGRAPH
 1. it is a great day
 Today

the text block following the PARAGRAPH statement represents a Markdown numbered
list. It is equivalent to:

IF the sky is blue THEN PARAGRAPH 1. it is a great day today

or

 IF the sky is blue THEN PARAGRAPH
1. It is a great day today

 If you wish to indent some text to indicate (for example) a Markdown code block, you
can do something like:

 PARAGRAPH
 This is an example of some code:
 This text will be indented.
 This text will not be.

In yscript code, trailing spaces on a line (that is space characters after the last character
of text but immediately before a newline) are ignored. The Markdown use of two
trailing spaces to indicate a hard line-break is not supported.88 If you want to introduce
a hard end of line, finish the line with a slosh ('\') or use the escape sequence '\n'.

For example:

 PARAGRAPH
 This is a line by itself\
 So is this\n
 This is the last line of the paragraph.

 But all of
 this text gets wrapped
 as the next paragraph.

Apart from these subtleties, Markdown text will normally be passed through yscript
unchanged and any idents and line-breaks that would cause changes to the meaning
of the Markdown text are preserved.

88 The reason for this is that giving meaning to two trailing spaces is likely to cause confusion for what is otherwise
a free-form syntax.

Coding with yscript Chapter 8 94

8.4 Suggested Markdown Elements

It is up to the calling environment to render the Markdown text. There are many
different extensions to the original Markdown format.89 yscript is largely agnostic as
to which of these you use and displays the Markdown text in its unchanged (but
humanly readable) form. The DataLex environment uses a third-party CommonMark
based library.

It is suggested that you confine your use to the following Markdown elements:

Paragraphs

A paragraph is a set of unindented lines. Paragraphs can be separated by a blank line
(that is, a line containing only zero or more spaces or tabs followed by a newline).
Normal paragraphs should not be indented. For example:

This is a paragraph. All
words in the paragraph will
be word-wrapped and left-aligned.

Lines

A line is a piece of text followed by a slosh ('\') and then a newline. As already stated,
yscript does not support the two trailing spaces format from the original Markdown
specification.

For example:

These are two\
separate lines.

Bold and Italics

Bold and italics can be indicated by surrounding text with two stars and one star
respectively. For example, this is in **bold** and this is in *italics*. There cannot be
a space between the stars and the text, i.e., this is ** incorrect and not in bold ** and
* this is also incorrect and not in italics *.

Headings

Headings are introduced by preceding a line with between one and six hash
characters. There should be a space after the last hash. For example:

89 The most popular extensions are GFM (Git-Hub Flavoured Markdown), CommonMark, Markdown Extra,
MultiMarkdown and R Markdown. These support extended syntax features such as tables, footnotes, definition lists,
task lists and emojis.

Chapter 8 Document Assembly 95

This is a level one heading
This is a level two heading
This is a level six heading

Alternatively, headings can use underlining. Text underlined with equal signs ('=')
represents a level one heading and text underlined with minus signs ('-') represents a
level two heading. For example:

This is a level one heading
===========================

This is a level two heading

Numbered Lists

Numbered lists consist of one or more paragraphs beginning with a series of digits
followed by a stop ('.') and then a space. The numbering of the paragraphs does not
matter, but the first number should be one ('1. '). Where you want to include
subsequent paragraphs at the same level as a numbered paragraph, this should be
indented by four spaces.

For example:

1. This is the first paragraph in the numbered list.

 This paragraph follows on at the same level as the first
 numbered paragraph.

2. This is the second paragraph in the numbered list.

Unnumbered Lists

Unnumbered lists start with a star ('*'), minus sign ('-') or plus sign ('+'), then a space
and then text. Again, subsequent paragraphs can be included at the same level but
indenting by four spaces. For example:

* This is the first item of an unnumbered list;
* this is the second item; and
* this is the third item.

Horizontal Rules

You can insert a horizontal rule but starting a line with three or more stars ('*') or
minus signs ('-'). Optionally, a space may be included between each star or minus sign.
For example:

* * * * * * *

Coding with yscript Chapter 8 96

Blockquotes

A blockquote can be introduced by starting a line with one or more greater than signs
('>') followed by a space. The number of greater than signs indicate the level of nesting.
A greater than sign may precede each line in a blockquote, or you can just place a
greater than sign before the first line.90 A blockquote can include other Markdown
elements.

For example:

> This is an example of a blockquote
> that contains two lines and then a block quoted list:
>> 1. This is the first item in the numbered list.
>> 2. This is the second item in the numbered list.
> This is the last sentence of the original blockquote.

Code Blocks

Code blocks are used to represent pre-formatted (i.e., mono-spaced) text such as is
used in computer code. In code blocks, all hard line-breaks and indenting are
rendered. Code blocks can be introduced by indenting every line by at least four
spaces or a tab or by fencing it within two lines starting with three back-ticks ('`').

For example:

```yscript 
this yscript code will be pre-formatted ONLY IF 
    it is not indented OR 
    it is indented however you like 
``` 

this yscript code will be pre-formatted ONLY IF
 it is indented by at least four spaces or a tab

Links

You can include HTML links by placing the link text in square brackets then the
destination URL in round brackets. For example:

[link text](http://www.destination.url)

Images

Images can be included in text by starting a line with an exclamation mark ('!'),
followed by a description of the image in square brackets and then the URL for the
image in round brackets. For example:

![alt-image text](http://image.url.location/image.png)

90 John Gruber refers to the latter approach as the lazy format. Placing a greater than sign before each line is
designed to reflect the ordinary e-mail practice and is easier to read for raw (non-rendered) Markdown text.

Chapter 8 Document Assembly 97

8.5 Templates

Templates are files that are separate from any yscript code that are marked up in a
templating language and processed by an external template processor. They are
suitable for documents of any complexity and may make use of the word-processing
or other features of their native format. Templates can use yscript facts to insert values
such as names, addresses, and amounts as well as to determine whether to include
material. When a template is to be generated, yscript passes the values of all relevant
facts for use by the template processor.91 The results can be attached to yscript facts as
described in the next section.

8.6 Attachments

Attachments are fact sub-declarations that indicate that generated reports, documents,
and templates should be brought to the users' attention when the value of a fact
becomes known. Typically, this fact will be the ultimate or a major conclusion.

The attachment syntax is:

 ATTACH [DISPLAYED] [qualifier] REPORT|DOCUMENT|TEMPLATE [name] [AS
description]

Where the DISPLAYED keyword is used, or where there is only a single attachment, the
attachment will be immediately displayed when the fact becomes known. If it is not
possible to display the attachment, the user will be prompted to save it.

If there is more than one non-displayed attachment, a list will be generated, and the
user will be presented with a multi-choice question as to which documents they wish
to view and potentially save.

The optional qualifier argument can be used to specify the template language. The
permitted values are currently: DataLex or Jinja2.

The REPORT, DOCUMENT or TEMPLATE argument specifies what is being attached. Without
a name, REPORT and DOCUMENT will display the default report and all documents
respectively. Otherwise, a report or document will be produced for the specified rule
name.

The description argument is used to describe the document in the multi-choice list or
in any questions.

91 The template processor can be invoked by either the yscript interpreter directly or by the calling environment.

Coding with yscript Chapter 8 98

For example:

FACT the disclosing party needs a non-disclosure agreement
ATTACH REPORT AS Record of Advice
ATTACH TEMPLATE nda.docx AS Draft Non-Disclosure Agreement
ATTACH DOCUMENT Letter to Client AS Letter to Client

will produce the necessary attached documents and present the dialog:

The following documents are available:
1) Record of Advice
2) Draft Non-Disclosure Agreement
3) Letter to Client

Please select:
**

8.7 Aliases

Fact names can be long and may not be convenient when used in templated
documents. Such names can be aliased using the ALIAS declaration. The syntax is:

ALIAS name

8.8 Templating Languages and Formats

yscript currently only supports two templating languages: DataLex and Jinja2.

DataLex

The DataLex templating language has been developed specifically for the DataLex
Development Environment by Philip Chung. It works with Microsoft Word DOCX
format documents.

To insert yscript fact values into your document, copy and paste in the fact name,
replace all spaces with underscores and then highlight it in yellow. Conditional text is
highlighted in green and roughly follows yscript syntax.

Jinja2

Jinja is a template engine written by Armin Ronacher. The syntax is based on
Django's92 built-in web template engine. Jinja is used by several other systems
including docassemble. 93 The most recent version of Jinja is Jinja2 and this is how it is
often referred to.

92 Django is a is a Python-based free and open-source web framework. See < https://www.djangoproject.com>.
93 docassemble is a free, open-source expert system for guided interviews and document assembly, based on
Python, YAML, and Markdown written by Jonathan Pyle. See <http://docassemble.org>.

Chapter 8 Document Assembly 99

Jinja2 is an extremely flexible language,94 and the processor can be used with any
type of text-based file format (such as Markdown, TEX, XML or RTF) as well as
Microsoft Word DOCX.

To include a yscript fact in a Jinja2 template document, replace all of the spaces in the
fact name with underscores and include it between a pair of double curly braces.

For example:

Dear {{name_of_the_customer}},

I am writing to you in relation to your contract with
{{name_of_contracting_party}}. Please note that this agreement will finish
on {{the_contract_termination_date}}. Should you with to renew the
contract, please give us a call.

Yours sincerely,

To include conditional text, use the syntax:

{% if condition %}
text to be included if condition is met
{% else %}
Optional text to be included if condition is not met
{% endif %}

For example:

Dear {{name_of_the_customer}},

I am writing to you in relation to your contract with
{{name_of_contracting_party}}. Please note that this agreement will finish
on {{the_contract_termination_date}}.

{% if the_customer_is_a_valued_customer %}
We really value your business and we would like to set up a time to talk to
you about renewing the contract.
{% else %}
We thank you for your business and hope you find some other company to take
care of your needs in the future.
{% endif %}

Yours sincerely,

94 A full description can be found at <https://jinja.palletsprojects.com/en/3.0.x/>.

Coding with yscript Chapter 8 100

Chapter 9: Style Guide

Writing good code can largely be a matter of personal taste, but like most languages
yscript will naturally support some approaches to coding better than others. The
following suggestions about style will make it easier to write code and make it simpler
to maintain and extend the code. These approaches will also make it easier for other
people to understand your code and to work collaboratively.

Simplicity

Try to aim for simplicity wherever possible. Complicated mechanical constructs and
workarounds detract from the readability of the code and can have unexpected
repercussions, particularly when code is later expanded or changed. Don't use
language features simply because they are available.

Isomorphism

Where the code represents rules from a legal source document such as a piece of
legislation, try to directly translate the statutory rules into yscript code, observing as
far as possible the order and grouping of the rules, and adding as little interpretation
as possible. Keep other rules, such as interpretation or ‘common sense’ which do not
derive directly from the legislation, in a separate part of your code.

Small rules

Avoid large and complicated rules. Small rules are easier to understand and will assist
with automatic explanations.

Fact Names

Include the basis for facts in descriptors, as in the layout is in "material form" as defined
in s.5. This will make for more meaningful explanations. Avoid using unnecessarily
long descriptors. These make for convoluted questions and explanations. Do not use
the translation and prompt options unnecessarily. Try changing the fact name to get
yscript to handle it properly, first. Avoid use of embedded facts.

Rule Types

Use only the default rule type unless you have a good reason for doing otherwise.
Relying upon the order of rule execution can lead to code that is cryptic and difficult
to understand.

Coding with yscript Chapter 9

102

Declarative Representation

Unless you are intentionally writing something that is procedural, avoid using
DETERMINE and CALL statements except where unavoidable or when generating
documents. When writing declarative code, avoid being concerned about the actual
operation of rules and instead concentrate on describing what it is that you are trying
to deal with.

Comments

Avoid using comments to repeat what is already in your code. The code should largely
be transparent. Comments are helpful where there is something non-obvious or work
remaining to be done.

Context

For large projects, divide the code into contexts and avoid overly relying on the shared
context for communication between contexts. As far as is possible, each context should
be capable of running on a free-standing basis and its reliance or links to other contexts
explicitly declared.

Appendix 1 Units, Currencies and Time Zones

 Appendix 1: Units, Currencies and Time Zones

This section contains a set of detailed tables outlining available units of measurement,
currency units and time zones.

9.1 Numerical Units

Unit Abbrev Metric

acre acre
amp A *
angstrom Å
astronomical unit au
atmosphere atm *
bar bar *
barrel bl
becquerel Bq *
bel B
bit b *
British thermal unit BTU
bushel bu
byte B *
calorie Cal
candela cd *
chain ch
coulomb C *
cup cup
dalton Da *
day day
decibel dB
degree °
degree Celsius °C
degree Fahrenheit °F
dram dr
electronvolt eV *
farad F *
fathom ftm
fluid ounce fl oz
foot ft
furlong fur
gallon gal
grain gr
gram g
gravity 𝑔
gray Gy *
hectare ha *
henry H *
hertz Hz *
hour hr
imp cup imp cup
imp tablespoon imp tbsp
imp teaspoon imp tsp
imperial barrel imp bl
imperial bushel imp bu
imperial fluid ounce imp fl oz
imperial gallon imp gal

imperial pint imp pt
imperial quart imp qt
imperial ton Imp ton
inch in
joule J *
katal kat *
kelvin K
knot knot
litre l *
lumen lm *
lux lx *
metre m *
mile mi
minute min
mole mol *
month mth
nautical mile nmi
neper Np
newton N *
ohm Ω *
ounce oz
pascal Pa *
pennyweight pwt
percent %
pint pt
pound lb
quart qt
radian rad
second s *
siemens S *
sievert Sv *
steradian sr
stone st
tablespoon tbsp
teaspoon tsp
tesla T *
ton ton *
tonne t *
us cup us cup
us tablespoon us tbsp
us teaspoon us tsp
volt V *
watt W *
weber Wb *
week wk
yard yd
year yr

 Figure 25 – Numerical Units

Appendix 1 Units, Currencies and Time Zones

9.2 Derived Units

Derived Unit Abbreviation Metric

bits per second bps *
bytes per second Bps *
coulombs per cubic metre C/m³ *
coulombs per kilogram C/kg *
coulombs per square metre C/m² *
cubic centimetres cm³
cubic feet cu ft
cubic inches cu in
cubic kilometres km³
cubic metres m³
cubic millimetres mm³
cubic yards cu yd
farads per metre F/m *
grams per metre square g/m² *
gray per second Gy/s *
hectopascals hPa *
henrys per metre H/m *
inches of mercury inHg
joules per cubic metre J/m³ *
joules per kelvin J/K *
joules per kilogram J/kg *
joules per mole J/mol *
katals per cubic metre kat/m³ *
metres per hour m/h *
metres per litre m/l *
metres per second m/s *
metres per second squared m/s² *
miles per gallon mpg
miles per hour mph
moles per cubic metre mol/m³ *
newton metres N m *
newtons per metre N/m *
pascal seconds Pa s *
pounds per square inch psi
radians per second rad/s
radians per second squared rad/s²
reciprocal metres m⁻¹
revolutions per minute rpm
square centimetres cm²
square feet sq ft
square inches sq in
square kilometres km²
square metres m²
square miles sq mi
square millimetres mm²
square yards sq yd
torr mmHg
volts per metre V/m *
watt hours W h *
watts per square metre W/m² *
watts per steradian W/sr *

Figure 26 - Derived Units

Appendix 1 Units, Currencies and Time Zones

9.3 Unit Synonyms

Units may be referred to by the following synonyms. By default, abbreviating and
multiplicative dots and stops are ignored. Non-SI units are not case specific. Units with
negative exponents will match equivalent units using a divisor. Exponents can be
expressed as simple digits (that is, 10m2 is treated the same as 10m²).

Synonym Unit
baud bits per second
candle candela
candlepower candela
cc cm³
Celsius degrees Celsius
centigrade Celsius
cu cm cm³
cu foot cu ft
cu inch cu in
cu m m³
cu yard cu yd
cui cu in
degC Celsius
degF Fahrenheit
degK Kelvin
degree Kelvin Kelvin
displacement ton imp ton
drachm dram
dwt pwt
Fahrenheit degree

Fahrenheit
fermi femtometre
ft² sq ft
ft³ cu ft
gamma nanotesla
gramme gram
in² sq in
in³ cu in
inche inch
J/s W
kg m/s² N
km per hour km/h
km per hr km/h
km/hour km/h
km/hr km/h
kmph km/h
kms/hr km/h
kph km/h
KWh kW h
kWh kW h
liter litre

long ton imp ton
m/s/s m/s²
meter metre
metric ton tonne
mho siemen
mi/h mph
mi/hr mph
mi/hr mph
mi² sq mi
micron micrometre
millimicron nanometre
N m J
N/m² Pa
r/min rpm
rev/min rpm
revs/min rpm
short ton ton
sq cm cm²
sq foot sq ft
sq inch sq in
sq km km²
sq m m²
sq mile sq mi
sq yard sq yd
us barrel barrel
us bl bl
us bu bu
us bushel bushel
us fl oz fl oz
us fluid ounce fluid ounce
us gal gal
us gallon gallon
us pint pint
us pt pt
us qt qt
us quart quart
us ton ton
w/t imp ton
weight ton imp ton
yd2 sq yd
yd³ cu yd

Figure 27 - Unit Synonyms

Appendix 1 Units, Currencies and Time Zones

9.4 Currency Units

Currency Abb Sym

Afghan afghani AFN ؋
Albanian lek ALL L
Alderney pound £
Algerian dinar DZD DA
Angloan kwanza AOA Kz
Argentine peso ARS $
Armenian dram AMD ֏
Artsakh dram դր.
Aruban florin AWG ƒ
Australian dollar AUD $
Azerbaijani manat AZN ₼
Bahamian dollar BSD $
Bahraini dinar BHD . ب.د
Bangladeshi taka BDT ৳
Barbadian dollar BBD BBD$
Belarusian ruble BYN Br
Belize dollar BZD $
Bermudian dollar BMD $
Bhutanese ngultrum BTN Nu.
Bitcoin BTC ₿
Bolivian boliviano BOB Bs.
Botswana pula BWP P
Brazilian real BRL R$
British pound GBP £
Brunei dollar BND $
Bulgarian leva BGN лв.
Burmese kyat MMK Ks
Burundian franc BIF Fr
CFP franc XPF ₣
Cambodian riel KHR ៛
Canadian dollar CAD $
Cape Verdean escudo CVE Esc
Cayman Islands dollar KYD $
Central African franc XAF Fr
Chilean peso CLP $
Chinese yuan CNY 元
Colombian peso COP $
Comorian franc KMF Fr
Congolese franc CDF Fr
Cook Islands dollar CKD $
Costa Rican colón CRC ₡
Croatian kuna HRK kn
Cuban peso CUP $
Czech koruna CZK Kč
Danish kroner DKK kr
Djiboutian franc DJF Fr
Dominican peso DOP RD$
Eastern Caribbean dollar XCD $
Egyptian pound EGP £
Eritrean nakfa ERN Nfk
Ethiopian birr ETB Br
European Euro EUR €
Falkland Islands pound FKP £
Faroese króna FOK kr
Fijian dollar FJD $
Gambian dalasi GMD D
Georgia lari GEL ₾
Ghanaian cedi GHS ₵
Gibraltar pound GIP £
Guatemalan quetzal GTQ Q

Guernsey pound GGP £
Guinean franc GNF Fr
Guyanese dollar GYD $
Haitian gourde HTG G
Honduran lempira HNL L
Hong Kong dollar HKD HK$
Hungarian forint HUF Ft
Icelandic króna ISK kr
Indian rupee INR ₹
Indonesian rupiah IDR Rp
Iranian rial IRR ریال
Iraqi dinar IQD د.ع
Israeli new shekel ILS ₪
Jamaican dollar JMD $
Japanese yen JPY ¥
Jersey pound JEP £
Jordanian dinar JOD ا.د
Kazakhstani tenge KZT ₸
Kenyan shilling KES Sh
Kiribati dollar KID $
Kuwaiti dinar KWD ك.د
Kyrgyzstani som KGS с
Lao kip LAK ₭
Lebanese pound LBP ل.ل
Lesotho loti LSL L
Liberian dollar LRD LRD$
Libyan dinar LYD د.ل
Macanese pataca MOP $
Macedonian denar MKD ден
Malagasy ariary MGA Ar
Malawian kwacha MWK MK
Malaysian ringgit MYR RM
Maldivian rufiyaa MVR .ރ
Manx pound IMP £
Mauritanian ouguiya MRU UM
Mauritian rupee MUR ₨
Mexican peso MXN MXN$
Moldovan leu MDL L
Mongolian tögrög MNT ₮
Moroccan dirham MAD م.د
Mozambican metical MZN MT
Namibian dollar NAD $
Nepalese rupee NPR !
Netherlands Ant guilder ANG ƒ
New Taiwan dollar TWD $
New Zealand dollar NZD $
Nicaraguan córdoba NIO $
Nigerian naira NGN ₦
Niue dollar $
North Korean won KPW ₩
Norwegian kroner NOK kr
Omani rial OMR ع.ر
Pakistani rupee PKR ₨
Panamanian balboa PAB B/.
Papua New Guinean kina PGK K
Paraguayan guaraní PYG ₲
Peruvian sol PEN S/.
Philippine peso PHP ₱
Pitcairn Islands dollar PND $
Polish złoty PLN zł
Qatari riyal QAR قر

Appendix 1 The cyscript Interpreter

107

RTGS dollar ZWB
Romanian leu RON lei
Russian ruble RUB ₽
Rwandan franc RWF Fr
Sahrawi peseta ₧
Saint Helena pound SHP £
Samoan tālā WST T
Saudi riyal SAR ریال
Serbian dinar RSD дин
Seychellois rupee SCR ₨
Sierra Leonean leone SLL Le
Singapore dollar SGD $
Solomon Islands dollar SBD $
Somali shilling SOS Sh
Somaliland shilling SLS Sl
South African rand ZAR R
South Korean won KRW ₩
South Sudanese pound SSP £
Sri Lankan rupee LKR Rs
Sudanese pound SDG س.ج
Surinamese dollar SRD SRD$
Swazi lilangeni SZL L
Swedish krona SEK kr

Swiss franc CHF Fr.
Syrian pound SYP £
Tajikistani somoni TJS с.
Tanzanian shilling TZS Sh
Thai baht THB ฿
Tongan paʻanga TOP $
Transnistrian ruble PRB р.
Trinidad & Tobago dollar TTD $
Tunisian dinar TND تد
Turkish lira TRY ₺
Turkmenistan manat TMT m.
Tuvaluan dollar TVD $
Ugandan shilling UGX Sh
Ukrainian hryvnia UAH ₴
UAE dirham AED إ.د
United States dollar USD $
Uruguayan peso UYU $
West African CFA franc XOF Fr
Yemeni rial YER ریال
Zambian kwacha ZMW ZK

Figure 28 - Currency Units

Appendix 1 Units, Currencies and Time Zones

9.5 Time Zone Styles

The following style names / time zone abbreviations can be used as the STYLE for facts
of type TIME. You can also use specify a time zone relative to UTC (Coordinated
Universal Time) or GMT (Greenwich Mean Time), for example: UCT+10 or GMT-1. Note that
time zones are not formally defined and that they sometimes can mean more than one
thing.

Abbrev Time Zone Time Diff
ACDT Australian

Central
Daylight-Saving
Time

UTC+10:30

ACST Australian
Central Standard
Time

UTC+09:30

ACT Acre Time UTC−05
ACWST Australian

Central Western
Standard Time

UTC+08:45

ADT Atlantic
Daylight Time

UTC−03

AEDT Australian
Eastern Daylight
Savings Time

UTC+11

AEST Australian
Eastern Standard
Time

UTC+10

AFT Afghanistan Time UTC+04:30
AKDT Alaska Daylight

Time
UTC−08

AKST Alaska Standard
Time

UTC−09

ALMT Alma-Ata Time UTC+06
AMST Amazon Summer

Time (Brazil)
UTC−03

AMT Amazon
Time (Brazil)

UTC−04

AMT Armenia Time UTC+04
ANAT Anadyr Time UTC+12
AQTT Aqtobe Time UTC+05
ART Argentina Time UTC−03
AST Atlantic

Standard Time
UTC−04

AWST Australian
Western Standard
Time

UTC+08

AZOST Azores Summer
Time

UTC±00

AZOT Azores Standard
Time

UTC−01

AZT Azerbaijan Time UTC+04
BNT Brunei Time UTC+08
BIOT British Indian

Ocean Time
UTC+06

BIT Baker Island
Time

UTC−12

BOT Bolivia Time UTC−04
BRST Brasília Summer

Time
UTC−02

95 BST is also sometimes used to mean Bougainville
Standard Time. Use UCT+11 instead.

BRT Brasília Time UTC−03
BST British Summer

Time95
UTC+01

BTT Bhutan Time UTC+06
CAT Central Africa

Time
UTC+02

CCT Cocos Islands
Time

UTC+06:30

CDT Central Daylight
Time

UTC−05

CEST Central European
Summer Time

UTC+02

CET Central European
Time

UTC+01

CHADT Chatham Daylight
Time

UTC+13:45

CHAST Chatham Standard
Time

UTC+12:45

CHOT Choibalsan
Standard Time

UTC+08

CHOST Choibalsan
Summer Time

UTC+09

CHST Chamorro
Standard Time

UTC+10

CHUT Chuuk Time UTC+10
CIST Clipperton

Island Standard
Time

UTC−08

CKT Cook Island Time UTC−10
CLST Chile Summer

Time
UTC−03

CLT Chile Standard
Time

UTC−04

COST Colombia Summer
Time

UTC−04

COT Colombia Time UTC−05
CST Central Standard

Time
UTC−06

CVT Cape Verde Time UTC−01
CWST Central Western

Standard Time
UTC+08:45

CXT Christmas Island
Time

UTC+07

DAVT Davis Time UTC+07
DDUT Dumont d'Urville

Time
UTC+10

EASST Easter Island
Summer Time

UTC−05

EAST Easter Island
Standard Time

UTC−06

EAT East Africa Time UTC+03
ECT Ecuador Time UTC−05

Appendix 1 The cyscript Interpreter

109

EDT Eastern Daylight
Time

UTC−04

EEST Eastern European
Summer Time

UTC+03

EET Eastern European
Time

UTC+02

EGST Eastern
Greenland Summer
Time

UTC±00

EGT Eastern
Greenland Time

UTC−01

EST Eastern Standard
Time

UTC−05

FET Further-eastern
European Time

UTC+03

FJT Fiji Time UTC+12
FKST Falkland Islands

Summer Time
UTC−03

FKT Falkland Islands
Time

UTC−04

FNT Fernando de
Noronha Time

UTC−02

GALT Galápagos Time UTC−06
GAMT Gambier Islands

Time
UTC−09

GET Georgia Standard
Time

UTC+04

GFT French Guiana
Time

UTC−03

GILT Gilbert Island
Time

UTC+12

GIT Gambier Island
Time

UTC−09

GMT Greenwich Mean
Time

UTC±00

GST South Georgia
and the South
Sandwich Islands
Time

UTC−02

GST Gulf Standard
Time

UTC+04

GYT Guyana Time UTC−04
HDT Hawaii–Aleutian

Daylight Time
UTC−09

HAEC Heure Avancée
d'Europe
Centrale

UTC+02

HST Hawaii–Aleutian
Standard Time

UTC−10

HKT Hong Kong Time UTC+08
HMT Heard and

McDonald
Islands Time

UTC+05

HOVST Hovd Summer Time UTC+08
HOVT Hovd Time UTC+07
ICT Indochina Time UTC+07
IDLW International

Day Line West
time zone

UTC−12

IDT Israel Daylight
Time

UTC+03

96 Note that IST can also mean Irish Standard Time
and Israel Standard Time. Use instead UTC+1 and
UTC+2 respectively.

IOT Indian Ocean
Time

UTC+03

IRDT Iran Daylight
Time

UTC+04:30

IRKT Irkutsk Time UTC+08
IRST Iran Standard

Time
UTC+03:30

IST Indian Standard
Time96

UTC+05:30

JST Japan Standard
Time

UTC+09

KALT Kaliningrad Time UTC+02
KGT Kyrgyzstan Time UTC+06
KOST Kosrae Time UTC+11
KRAT Krasnoyarsk Time UTC+07
KST Korea Standard

Time
UTC+09

LHST Lord Howe
Standard Time

UTC+10:30

LHST Lord Howe Summer
Time

UTC+11

LINT Line
Islands Time

UTC+14

MAGT Magadan Time UTC+12
MART Marquesas

Islands Time
UTC−09:30

MAWT Mawson Station
Time

UTC+05

MDT Mountain
Daylight Time

UTC−06

MET Middle European
Time

UTC+01

MEST Middle European
Summer Time

UTC+02

MHT Marshall Islands
Time

UTC+12

MIST Macquarie Island
Station Time

UTC+11

MIT Marquesas
Islands Time

UTC−09:30

MMT Myanmar Standard
Time

UTC+06:30

MSK Moscow Time UTC+03
MST Malaysia

Standard Time
UTC+08

MST Mountain
Standard Time

UTC−07

MUT Mauritius Time UTC+04
MVT Maldives Time UTC+05
MYT Malaysia Time UTC+08
NCT New Caledonia

Time
UTC+11

NDT Newfoundland
Daylight Time

UTC−02:30

NFT Norfolk Island
Time

UTC+11

NOVT Novosibirsk
Time

UTC+07

NPT Nepal Time UTC+05:45
NST Newfoundland

Standard Time
UTC−03:30

Coding with yscript Appendix 1

110

NT Newfoundland
Time

UTC−03:30

NUT Niue Time UTC−11
NZDT New Zealand

Daylight Time
UTC+13

NZST New Zealand
Standard Time

UTC+12

OMST Omsk Time UTC+06
ORAT Oral Time UTC+05
PDT Pacific Daylight

Time
UTC−07

PET Peru Time UTC−05
PETT Kamchatka Time UTC+12
PGT Papua New Guinea

Time
UTC+10

PHOT Phoenix Island
Time

UTC+13

PHT Philippine Time UTC+08
PHST Philippine

Standard Time
UTC+08

PKT Pakistan
Standard Time

UTC+05

PMDT Saint Pierre and
Miquelon
Daylight Time

UTC−02

PMST Saint Pierre and
Miquelon
Standard Time

UTC−03

PONT Pohnpei Standard
Time

UTC+11

PST Pacific Standard
Time

UTC−08

PWT Palau Time UTC+09
PYST Paraguay Summer

Time
UTC−03

PYT Paraguay Time UTC−04
RET Réunion Time UTC+04
ROTT Rothera Research

Station Time
UTC−03

SAKT Sakhalin Island
Time

UTC+11

SAMT Samara Time UTC+04
SAST South African

Standard Time
UTC+02

SBT Solomon Islands
Time

UTC+11

SCT Seychelles Time UTC+04
SDT Samoa Daylight

Time
UTC−10

SGT Singapore Time UTC+08
SLST Sri Lanka

Standard Time
UTC+05:30

SRET Srednekolymsk
Time

UTC+11

SRT Suriname Time UTC−03
SST Samoa Standard

Time
UTC−11

SST Singapore
Standard Time

UTC+08

SYOT Showa Station
Time

UTC+03

TAHT Tahiti Time UTC−10
THA Thailand

Standard Time
UTC+07

TFT French Southern
and Antarctic
Time

UTC+05

TJT Tajikistan Time UTC+05
TKT Tokelau Time UTC+13
TLT Timor Leste Time UTC+09
TMT Turkmenistan

Time
UTC+05

TRT Turkey Time UTC+03
TOT Tonga Time UTC+13
TVT Tuvalu Time UTC+12
ULAST Ulaanbaatar

Summer Time
UTC+09

ULAT Ulaanbaatar
Standard Time

UTC+08

UTC Coordinated
Universal Time

UTC±00

UYST Uruguay Summer
Time

UTC−02

UYT Uruguay Standard
Time

UTC−03

UZT Uzbekistan Time UTC+05
VET Venezuelan

Standard Time
UTC−04

VLAT Vladivostok Time UTC+10
VOLT Volgograd Time UTC+04
VOST Vostok Station

Time
UTC+06

VUT Vanuatu Time UTC+11
WAKT Wake Island Time UTC+12
WAST West Africa

Summer Time
UTC+02

WAT West Africa Time UTC+01
WEST Western European

Summer Time
UTC+01

WET Western European
Time

UTC±00

WIB Western
Indonesian Time

UTC+07

WIT Eastern
Indonesian Time

UTC+09

WITA Central
Indonesia Time

UTC+08

WGST West Greenland
Summer Time

UTC−02

WGT West Greenland
Time

UTC−03

WST Western Standard
Time

UTC+08

YAKT Yakutsk Time UTC+09

Figure 29 - Time Zones

Appendix 1 Units, Currencies and Time Zones

9.6 Time Zone Country Names

Africa/Abidjan
Africa/Accra
Africa/Addis_Ababa
Africa/Algiers
Africa/Asmara
Africa/Bamako
Africa/Bangui
Africa/Banjul
Africa/Bissau
Africa/Blantyre
Africa/Brazzaville
Africa/Bujumbura
Africa/Cairo
Africa/Casablanca
Africa/Ceuta
Africa/Conakry
Africa/Dakar
Africa/Dar_es_Salaam
Africa/Djibouti
Africa/Douala
Africa/El_Aaiun
Africa/Freetown
Africa/Gaborone
Africa/Harare
Africa/Johannesburg
Africa/Juba
Africa/Kampala
Africa/Khartoum
Africa/Kigali
Africa/Kinshasa
Africa/Lagos
Africa/Libreville
Africa/Lome
Africa/Luanda
Africa/Lubumbashi
Africa/Lusaka
Africa/Malabo
Africa/Maputo
Africa/Maseru
Africa/Mbabane
Africa/Mogadishu
Africa/Monrovia
Africa/Nairobi
Africa/Ndjamena
Africa/Niamey
Africa/Nouakchott
Africa/Ouagadougou
Africa/Porto-Novo
Africa/Sao_Tome
Africa/Tripoli
Africa/Tunis
Africa/Windhoek
America/Adak
America/Anchorage
America/Anguilla
America/Antigua
America/Araguaina
America/Argentina/Buenos_Aries
America/Argentina/Catamarca
America/Argentina/Cordoba
America/Argentina/Jujuy
America/Argentina/La_Rioja
America/Argentina/Mendoza
America/Argentina/Rio_Gallegos
America/Argentina/Salta
America/Argentina/San_Juan
America/Argentina/San_Luis
America/Argentina/Tucuman
America/Argentina/Ushuaia
America/Aruba

America/Asuncion
America/Atikokan
America/Bahia
America/Bahia_Banderas
America/Barbados
America/Belem
America/Belize
America/Blanc-Sablon
America/Boa_Vista
America/Bogota
America/Boise
America/Cambridge_Bay
America/Campo_Grande
America/Cancun
America/Caracas
America/Cayenne
America/Cayman
America/Chicago
America/Chihuahua
America/Costa_Rica
America/Creston
America/Cuiaba
America/Curacao
America/Danmarkshavn
America/Dawson
America/Dawson_Creek
America/Denver
America/Detroit
America/Dominica
America/Edmonton
America/Eirunepe
America/El_Salvador
America/Fort_Nelson
America/Fortaleza
America/Glace_Bay
America/Goose_Bay
America/Grand_Turk
America/Grenada
America/Guadeloupe
America/Guatemala
America/Guayaquil
America/Guyana
America/Halifax
America/Havana
America/Hermosillo
America/Indiana/Indianapolis
America/Indiana/Knox
America/Indiana/Marengo
America/Indiana/Petersburg
America/Indiana/Tell_City
America/Indiana/Vevay
America/Indiana/Vincennes
America/Indiana/Winamac
America/Inuvik
America/Iqaluit
America/Jamaica
America/Juneau
America/Kentucky/Louisville
America/Kentucky/Monticello
America/Kralendijk
America/La_Paz
America/Lima
America/Los_Angeles
America/Lower_Princes
America/Maceio
America/Managua
America/Manaus
America/Marigot
America/Martinique
America/Matamoros

America/Mazatlan
America/Menominee
America/Merida
America/Metlakatla
America/Mexico_City
America/Miquelon
America/Moncton
America/Monterrey
America/Montevideo
America/Montserrat
America/Nassau
America/New_York
America/Nipigon
America/Nome
America/Noronha
America/North_Dakota/Beulah
America/North_Dakota/Center
America/North_Dakota/New_Salem
America/Nuuk
America/Ojinaga
America/Panama
America/Pangnirtung
America/Paramaribo
America/Phoenix
America/Port_of_Spain
America/Port-au-Prince
America/Porto_Velho
America/Puerto_Rico
America/Punta_Arenas
America/Rainy_River
America/Rankin_Inlet
America/Recife
America/Regina
America/Resolute
America/Rio_Branco
America/Santarem
America/Santiago
America/Santo_Domingo
America/Sao_Paulo
America/Scoresbysund
America/Sitka
America/St_Barthelemy
America/St_Johns
America/St_Kitts
America/St_Lucia
America/St_Thomas
America/St_Vincent
America/Swift_Current
America/Tegucigalpa
America/Thule
America/Thunder_Bay
America/Tijuana
America/Toronto
America/Tortola
America/Vancouver
America/Whitehorse
America/Winnipeg
America/Yakutat
America/Yellowknife
Antarctica/Casey
Antarctica/Davis
Antarctica/DumontDUrville
Antarctica/Macquarie
Antarctica/Mawson
Antarctica/McMurdo
Antarctica/Palmer
Antarctica/Rothera
Antarctica/Syowa
Antarctica/Troll
Antarctica/Vostok

Coding with yscript Appendix 1

112

Arctic/Longyearbyen
Asia/Aden
Asia/Almaty
Asia/Amman
Asia/Anadyr
Asia/Aqtau
Asia/Aqtobe
Asia/Ashgabat
Asia/Atyrau
Asia/Baghdad
Asia/Bahrain
Asia/Baku
Asia/Bangkok
Asia/Barnaul
Asia/Beirut
Asia/Bishkek
Asia/Brunei
Asia/Chita
Asia/Choibalsan
Asia/Colombo
Asia/Damascus
Asia/Dhaka
Asia/Dili
Asia/Dubai
Asia/Dushanbe
Asia/Famagusta
Asia/Gaza
Asia/Hebron
Asia/Ho_Chi_Minh
Asia/Hong_Kong
Asia/Hovd
Asia/Irkutsk
Asia/Istanbul
Asia/Jakarta
Asia/Jayapura
Asia/Jerusalem
Asia/Kabul
Asia/Kamchatka
Asia/Karachi
Asia/Kathmandu
Asia/Khandyga
Asia/Kolkata
Asia/Krasnoyarsk
Asia/Kuala_Lumpur
Asia/Kuching
Asia/Kuwait
Asia/Macau
Asia/Magadan
Asia/Makassar
Asia/Manila
Asia/Muscat
Asia/Nicosia
Asia/Novokuznetsk
Asia/Novosibirsk
Asia/Omsk
Asia/Oral
Asia/Phnom_Penh
Asia/Pontianak
Asia/Pyongyang
Asia/Qatar
Asia/Qostanay
Asia/Qyzylorda
Asia/Riyadh
Asia/Sakhalin
Asia/Samarkand
Asia/Seoul
Asia/Shanghai
Asia/Singapore
Asia/Srednekolymsk
Asia/Taipei
Asia/Tashkent
Asia/Tbilisi

Asia/Tehran
Asia/Thimphu
Asia/Tokyo
Asia/Tomsk
Asia/Ulaanbaatar
Asia/Urumqi
Asia/Ust-Nera
Asia/Vientiane
Asia/Vladivostok
Asia/Yakutsk
Asia/Yangon
Asia/Yekaterinburg
Asia/Yerevan
Atlantic/Azores
Atlantic/Bermuda
Atlantic/Canary
Atlantic/Cape_Verde
Atlantic/Faroe
Atlantic/Madeira
Atlantic/Reykjavik
Atlantic/South_Georgia
Atlantic/St_Helena
Atlantic/Stanley
Australia/Adelaide
Australia/Brisbane
Australia/Broken_Hill
Australia/Darwin
Australia/Eucla
Australia/Hobart
Australia/Lindeman
Australia/Lord_Howe
Australia/Melbourne
Australia/Perth
Australia/Sydney
Europe/Amsterdam
Europe/Andorra
Europe/Astrakhan
Europe/Athens
Europe/Belgrade
Europe/Berlin
Europe/Bratislava
Europe/Brussels
Europe/Bucharest
Europe/Budapest
Europe/Busingen
Europe/Chisinau
Europe/Copenhagen
Europe/Dublin
Europe/Gibraltar
Europe/Guernsey
Europe/Helsinki
Europe/Isle_of_Man
Europe/Istanbul
Europe/Jersey
Europe/Kaliningrad
Europe/Kiev
Europe/Kirov
Europe/Lisbon
Europe/Ljubljana
Europe/London
Europe/Luxembourg
Europe/Madrid
Europe/Malta
Europe/Mariehamn
Europe/Minsk
Europe/Monaco
Europe/Moscow
Europe/Nicosia
Europe/Oslo
Europe/Paris
Europe/Podgorica
Europe/Prague

Europe/Riga
Europe/Rome
Europe/Samara
Europe/San_Marino
Europe/Sarajevo
Europe/Saratov
Europe/Simferopol
Europe/Skopje
Europe/Sofia
Europe/Stockholm
Europe/Tallinn
Europe/Tirane
Europe/Ulyanovsk
Europe/Uzhgorod
Europe/Vaduz
Europe/Vatican
Europe/Vienna
Europe/Vilnius
Europe/Volgograd
Europe/Warsaw
Europe/Zagreb
Europe/Zaporozhye
Europe/Zurich
Indian/Antananarivo
Indian/Chagos
Indian/Christmas
Indian/Cocos
Indian/Comoro
Indian/Kerguelen
Indian/Mahe
Indian/Maldives
Indian/Mauritius
Indian/Mayotte
Indian/Reunion
Pacific/Apia
Pacific/Auckland
Pacific/Bougainville
Pacific/Chatham
Pacific/Chuuk
Pacific/Easter
Pacific/Efate
Pacific/Enderbury
Pacific/Fakaofo
Pacific/Fiji
Pacific/Funafuti
Pacific/Galapagos
Pacific/Gambier
Pacific/Guadalcanal
Pacific/Guam
Pacific/Honolulu
Pacific/Kiritimati
Pacific/Kosrae
Pacific/Kwajalein
Pacific/Majuro
Pacific/Marquesas
Pacific/Midway
Pacific/Nauru
Pacific/Niue
Pacific/Norfolk
Pacific/Noumea
Pacific/Pago_Pago
Pacific/Palau
Pacific/Pitcairn
Pacific/Pohnpei
Pacific/Port_Moresby
Pacific/Rarotonga
Pacific/Saipan
Pacific/Tahiti
Pacific/Tarawa
Pacific/Tongatapu
Pacific/Wake
Pacific/Wallis

Figure 30 - Time Zone Country Names

Appendix 2 The cyscript Interpreter

Appendix 2: The cyscript Interpreter

This appendix describes cyscript – the default command line interpreter. This is a
Unix/Linux command line tool that provides a simple environment to run and test
yscript code. The code for the interpreter interface itself (ys.c) is also an example of
how to use the yscript API.97

1. Usage

cyscript is invoked with the command ys. The command takes zero or more files
containing yscript code as arguments. Where no source file is provided, cyscript will
read from standard input. The files conventionally end with the suffix .ys and cyscript
will check for the presence of a file with this ending before looking for the bare
filename.

The formal usage is:

ys [-cdgmpstvx] [--facts=facts] [--goal=rule] [file[.ys]] ...

Available Flags

The flags have the following meanings:

-c, --check This option parses all input files but does not run them.
This is useful for checking to see if there are any syntax
errors or warnings.98

-d, --debug The -d flag turns on verbose mode which reports system
actions such as when rules as fired or blocked, when a fact
is explicitly being determined or forgotten and when fact
values are concluded or changed.

-f file,
--facts=file The -f indicates that once the code files have been parsed

and loaded, that the facts and default goal should be set to
those contained in the specified file. The format99 of the
file is the same as the one used by the interactive load and
save commands.

97 cyscript can also be placed on a socket and used as a server. This is covered in Appendix 6: Using cyscript as a
Server on page 157.
98 There is a list of all error and warning messages below on page 127.
99 This file is stored in JSON format.

Coding with yscript Appendix 2 114

-g rule,
--goal=rule The -g flag sets the default goal rule to a rule either

matching the specified rule name or (if there is no such
rule) the first rule that contains rule as a substring.

-h, --help The help flag displays a quick summary of command usage

and flags.

-j, --json This flag will cause all output to be in JSON format.100 This
is intended to support applications that use the interpreter
in an automated way. It makes sure that all output is
always flushed and changes the prompt to *-* on a line by
itself.

-n, --showfacts The -n flag writes the names of all facts that are used in any
of the input source files. These are written one per line. It is
intended to support external applications that need to
interact with yscript using fact values.

-p, --pretty The -p flag outputs a pretty-printed copy of the yscript
code on standard output.

-s, --statistics The -s flag outputs some statistics about the yscript code.
These include the total number of rules, facts, tokens and
characters.

-t, --translations The -t flag outputs the translations used for all facts. This
includes the prompt that will be used to get a value from
the user and the fact in positive and negative form.

-T, --templates=dir This flag specifies the base directory for all document
template101 files. When set, only files located under this
directory can be used as templates.

-v, --version The -v flag prints the version number for interpreter and
library.

-x, --xref The -x flag prints a fact cross reference that shows which
rules use the fact and which rules conclude a value for the
fact.

100 See Appendix 6: Using cyscript as a Server on page 157.
101 For discussion of document templates, see § 8.5 on page 97.

Appendix 2 The cyscript Interpreter 115

-y, --yaml The -y flag causes all output to be in YAML102 format. Like
the -j flag, this also causes cyscript to operate in server
mode without pagination and with regular output
flushing.

Code Reformatting

The pretty printer (-p) will output code in standard recommended format. This is
mainly intended for tidying up code and making it consistent, but it is also useful
occasionally for tracking down obscure bugs. For example, the following input:

PERSON the person
RULE South African Citizenship Act 1995 PROVIDES
the person is a South African citizen ONLY IF
 the person is a citizen by birth under section 2 of
 the South African Citizenship Act 1995 OR the person is a citizen
by descent under section 3 of the South African Citizenship Act 1995 OR the
person is a citizen by naturalisation under section 4
 of the South African Citizenship Act 1995 RULE South
African Citizenship Act 1995 Section 2 PROVIDES
the person
is
a citizen by birth under section 2 of
the South African Citizenship Act 1995 ONLY IF section 2(1) of the
South African Citizenship Act 1995 applies OR section 2(2) of
the South African Citizenship Act 1995 applies OR section 2(3)
of the South African Citizenship Act 1995 applies

will be reformatted as:

PERSON the person

RULE South African Citizenship Act 1995 PROVIDES
the person is a South African citizen ONLY IF
 the person is a citizen by birth under section 2 of the South
 African Citizenship Act 1995 OR
 the person is a citizen by descent under section 3 of the South
 African Citizenship Act 1995 OR
 the person is a citizen by naturalisation under section 4 of the
 South African Citizenship Act 1995

RULE South African Citizenship Act 1995 Section 2 PROVIDES
the person is a citizen by birth under section 2 of the South African
Citizenship Act 1995 ONLY IF
 section 2(1) of the South African Citizenship Act 1995 applies OR
 section 2(2) of the South African Citizenship Act 1995 applies OR
 section 2(3) of the South African Citizenship Act 1995 applies

102 Discussion of YAML output is in Appendix 6: Using cyscript as a Server at page 157.

Coding with yscript Appendix 2 116

Statistics

The -s flag produces simple statistics about yscript code. For example:

Rules: 93
Facts: 445
Tokens: 858
Characters: 32968

Translations

The -t flag produces a list of the translations used for all facts including the forms that
will be used to ask for a value and, as appropriate, its positive and negative form or
the form used to report a non-boolean value. Where the default generated translations
have been overridden (via a TRANSLATE or PROMPT declaration), these translations are
used.

This facility is useful because it allows you to see how every fact will be presented to
the application user without having to run through all fact scenarios. The output
format is first the fact as a question, then the fact in positive form and then the fact in
negative form (or just the fact with a value for non-boolean facts).

For example:

- Does Part III of the Act apply?
- Part III of the Act applies.
- Part III of the Act does not apply.

- Is S8(1)(a) satisfied?
- S8(1)(a) is satisfied.
- S8(1)(a) is not satisfied.

- Did a person copy the circuit layout in a material form?
- A person copied the circuit layout in a material form.
- A person did not copy the circuit layout in a material form.

- Has the copy of the circuit layout or an integrated circuit made
 in accordance with the circuit layout been sold?
- The copy of the circuit layout or an integrated circuit made in
 accordance with the circuit layout has been sold.
- The copy of the circuit layout or an integrated circuit made in
 accordance with the circuit layout has not been sold.

- What is the date of infringement?
- The date of infringement is {}.

Note that the standard distribution also includes a utility called trans which can also
be useful in understanding how propositions have been interpreted. It is a filter that
reads a line which should contain a proposition and it outputs how the proposition
has been divided, why and gives the default translations.

Appendix 2 The cyscript Interpreter 117

For example:

% trans
Aristotle remarks that falsity and truth require combination and separation

aristotle/remarks/that falsity and truth require combination and separation
[defined-verb]

- Does Aristotle remark that falsity and truth require combination and
separation?
- Aristotle remarks that falsity and truth require combination and
separation.
- Aristotle does not remark that falsity and truth require combination and
separation.

The notion of a proposition can also be found in the works of Medieval
philosophers

the notion of a proposition/can/also be found in the works of medieval
philosophers [skip-noun|auxiliary-verb]

- Can the notion of a proposition also be found in the works of Medieval
philosophers?
- The notion of a proposition can also be found in the works of Medieval
philosophers.
- The notion of a proposition cannot also be found in the works of Medieval
philosophers.

Cross-referencing

The -x flag produces a fact cross-reference. It shows a list of all facts along with the
names of rules where a fact is used (preceded by a hyphen) and rules where a value
for the fact is determined (preceded by an Asterix). Fact names are the glue that binds
rules together and it is important that they match when they should. An example
cross-reference follows:

section 2(1) of the South African Citizenship Act 1995 applies
 * South African Citizenship Act 1995 Section 2(1)
 - South African Citizenship Act 1995 Section 2
 - South African Citizenship Act 1995 Section 2(2)(a)

section 2(1)(a) of the South African Citizenship Act 1995 applies
 * South African Citizenship Act 1995 Section 2(1)(a)
 - South African Citizenship Act 1995 Section 2(1)

the person was a South African citizen immediately prior to the date of
commencement of the South African Citizenship Amendment Act, 2010
 * Citizenship Amendment Act, 2010 Commencement
 - South African Citizenship Act 1995 Section 2(1)(a)

the person was born in the republic of South Africa
 - South African Citizenship Act 1995 Section 2(2)(a)
 - South African Citizenship Act 1995 Section 2(3)
 - South African Citizenship Act 1995 Section 4(3)

Coding with yscript Appendix 2 118

Return Code

ys returns 0 on success, and non-zero on error. Possible errors include usage errors,
missing or invalid file names, syntax errors and run-time errors. For a full list, see Error
and Warning Messages below.

2. Interactive Sessions

When the cyscript is started, the first thing it does is to load and parse the yscript code
file(s). If any syntax or other errors are encountered, one or more error messages or
warnings are issued. If a fact file has been specified via the -f flag, the included goal
is set, and facts are loaded. If a goal has been declared via the -g flag, this is set as the
default goal.

Selecting a Goal

If no goal has been set and the code contains more than one listed GOAL, the user is
asked which goal rule they wish to use.

For example:

The following goals are defined:

1) Community Gaming Regulation 2020 Regulation 4 - Art union
 gaming activities
2) Community Gaming Regulation 2020 Regulation 5 - Housie or bingo
3) Community Gaming Regulation 2020 Regulation 6 – Draw lotteries
4) Community Gaming Regulation 2020 Regulation 7 - No-draw lotteries
5) Community Gaming Regulation 2020 Regulation 8 - Mini-numbers
 lotteries
6) Community Gaming Regulation 2020 Regulation 9 - Progressive
 lotteries
7) Community Gaming Regulation 2020 Regulation 10 – Free lotteries
8) Community Gaming Regulation 2020 Regulation 11 - Promotional
 raffles conducted by registered clubs
9) Community Gaming Regulation 2020 Regulation 12 – Other gaming
 activities for charitable purposes

 10) Community Gaming Regulation 2020 Regulation 13 - Sweeps and
 calcuttas

 11) Community Gaming Regulation 2020 Regulation 14 - Trade
 promotion gaming activities

 Please select a goal?
 **

Questions and Prompts

Execution begins by firing the goal rule. Rule evaluation proceeds until the value of a
fact is needed from the application user. The system then issues the default
explanation for the fact (if any) and prompts for a fact value. Ordinarily, a simple
prompt is used, and the user is expected to respond with an answer of a type that is
appropriate for the fact in issue. There are also several standard responses such as quit
to end the session and help to get a list of available cyscript commands. If the user

Appendix 2 The cyscript Interpreter 119

types in something that can’t be understood or that is otherwise invalid, the system
issues an error and re-asks the question.

For example:

 1) What is the name of the nominee?
 ** Paul Dutton

 2) Is he an Australian citizen?
 ** no idea

 Please respond with yes or no.

 3) Is Peter Dutton an Australian citizen?
 **

Similarly, if the fact has an associated range and the answer is out of range, a warning
will be issued and the question re-asked.

For example:

 9) What is the amount of the gross proceeds of the AustLII
 Christmas Lottery?
 ** 30000

 10) What is the amount paid to AustLII?
 ** 40000

 The value must be between $0 to $30,000.

Where the fact has a set of discrete possible range values, the prompt will be in
multiple choice form. For example:

 1) What is the type of gaming activity that you are proposing?
 (a) Art union
 (b) Housie or bingo
 (c) Draw lottery (including raffles and guessing competitions)
 (d) No-draw lottery (including break-open lotteries, scratch
 lotteries and football doubles)
 (e) Mini-numbers lottery
 (f) Progressive lottery (including a hundred club, silver
 Circles and tipping competitions)
 (g) Free lottery (including lucky door or lucky seat promotions)
 (h) Promotional raffle conduct by a registered club
 (i) Other gaming activity (including a chocolate wheel or
 Lucky envelopes) for charitable purposes
 (j) Sweep or calcutta
 (k) Trade promotion gaming activity (including card jackpot games)

 Please select?
 **

Coding with yscript Appendix 2 120

Uncertain Responses

If the user is uncertain of an answer or where they specifically wish to say that the
answer to a question is uncertain or they do not wish to specify, they can type u,
unknown, uncertain, or unspecified.

A blank answer for a question involving facts of type STRING will also be interpreted as
an unspecified response. This behaviour is important for the answering of questions
related to named subjects. It means, for example, that if the user hits enter in response
to the name of a named subject, follow-up questions will be supressed, and the
description of the named subject will not be replaced in subsequent dialogs.

For example:

 1) What is the name of the taxpayer?
 **

 2) Is the taxpayer an Australian citizen?
 **

It also means that the user can skip answering gender questions or questions in
relation to the preferred form of address. For example:

 1) What is the name of the taxpayer?
 ** Gretta Simpson

 2) What is Gretta Simpson's preferred gender?
 **

 3) What is Gretta Simpson's preferred form of address?
 **

 4) Is Gretta Simpson an Australian citizen?
 **

What If?

The user can test what will happen if they answer in a particular way by prefacing
their answer with the term whatif or the words what if. Provided that the proposed
answer is a legal response, the system will return the conclusions that would be
reached or if none would be reached, what the next question will be.

Appendix 2 The cyscript Interpreter 121

For example:

7) Has Google volunteered to comply with the requirements of the Act?
 ** what if no

 The following conclusions will be drawn:
 - Google has not volunteered to comply with the requirements
 of the Act under section 6 for the reporting period.
 - Section 5(1)(d) does not apply.
 - Section 5(1) does not apply.
 - Google is not a reporting entity.
 - The conditions set out in section 13(1) are not met.
 - Google has not submitted a modern slavery statement under
 section 13.
 - Section 16(2)(a) applies.
 - Section 16(2) applies.
 - Google has complied with the Act.

7) Has Google volunteered to comply with the requirements of the Act?
 ** what if yes

 No immediate conclusions will be drawn. The system will go on to ask:
 Has Google given written notice to the Minister in a manner and
 form approved by the Minister?

Why?

The why command can be used to explain why a question is being asked. Where the
current question is about a related fact such as a named subject or a string used in an
associated explanation, translation, or document, then the response will be to say that
answer will be used when referring to the fact or named subject.

For example:

 1) What is the name of the client?
 ** why

 This will be used when referring to the client.

 2) What is the client’s address
 ** why

 This will be used when referring to the client’s address.

Where the current question results from an attempt to infer a value for another fact,
the first time the command is issued, the response will be to say that the fact on the
top of the goal fact stack is being determined. If the command is re-issued, the system
backs up through the stack to use the next goal fact and so on. The effect is to
successively explain what a question is being ask and then why it is necessary to know
the value of the fact forming the basis of the explanation.

Coding with yscript Appendix 2 122

For example:

 3) Did Telstra have a consolidated revenue of at least $100 million
 for the reporting period?
 ** why

 This will help determine whether or not section 5(1) applies.

 3) Did Telstra have a consolidated revenue of at least $100 million
 for the reporting period?
 ** why

 This will help determine whether or not Telstra is a reporting

 entity.

 3) Did Telstra have a consolidated revenue of at least $100 million
 for the reporting period?
 ** why

 This will help determine whether or not Telstra has complied with
 the Act.

 3) Did Telstra have a consolidated revenue of at least $100 million
 for the reporting period?
 ** why

 There are no other facts under consideration.

When the why command is followed by the word this (ie why this), only the top level
goal will be displayed. For example:

 3) Did Telstra have a consolidated revenue of at least $100 million
 for the reporting period?
 ** why this

 This will help determine whether or not section 5(1) applies.

What?

The what command displays a list of all facts which have been supplied by the user
(that is, it displays a list of premises). Apart from being useful in and of itself, this also
provides numbers that can be used with the forget command.

Appendix 2 The cyscript Interpreter 123

For example:

 1) What is the name of the entity?
 ** Telstra

 2) Is Telstra an individual?
 ** no

 3) Did Telstra have a consolidated revenue of at least $100 million
 for the reporting period?
 ** yes

 4) Was Telstra a company during the reporting period?
 ** yes

 5) Was Telstra formed or incorporated in Australia?
 ** what

 1) The name of the entity is Telstra.
 2) Telstra is not an individual.
 3) Telstra had a consolidated revenue of at least $100 million for
 the reporting period.
 4) Telstra was a company during the reporting period.

So?

The so command displays a list of all conclusions that have been reached. The numbers
for each fact can be used with the how command.

For example:

 Was Telstra formed or incorporated in Australia?
 ** so

 1) Telstra was a body corporate during the reporting period.
 2) Section 5(2)(b) does not apply.
 3) Telstra was not a trust where the trust estate was a resident
 trust estate within the meaning of Division 6 of Part III of the
 Income Tax Assessment Act 1936 during the reporting period.
 4) Subsection (b) of the definition of "Australian entity" does not
 apply.
 5) Telstra was not a corporate limited partnership which was a
 resident within the meaning of section 94T of the Income Tax
 Assessment Act 1936 during the reporting period.
 6) Subsection (c) of the definition of "Australian entity" does not
 apply.
 7) Telstra was not a partnership during the reporting period.
 8) Telstra was not a non-corporate Commonwealth entity within the
 meaning of the Public Governance, Performance and Accountability
 Act 2013.

How

The how command can be used to explain how a particular conclusion was reached.
It lists the facts that were used in determining a value for the fact. For example:

 5) Was Telstra formed or incorporated in Australia?
 ** how 2

 Section 5(2)(b) does not apply because Telstra was a body
 Corporate during the reporting period.

Coding with yscript Appendix 2 124

Forget

The forget command is used to forget the value of a user-supplied fact or premise. The
value of the fact is set to unknown and the system is restarted. The effect of this is to
usually to immediately re-ask for a value of the fact that was just forgotten. If instead
of an individual fact number, the user type forget all, the value of all facts and
conclusions will be forgotten and the session will restart.

For example:

 1) What is the name of the entity?
 ** Australia Post

 2) Is Australia Post an individual?
 ** no

 3) Did Australia Post have a consolidated revenue of at least $100
 million for the reporting period?
 ** yes

 4) Was Australia Post a company during the reporting period?
 ** what

 1) The name of the entity is Australia Post.
 2) Australia Post is not an individual.
 3) Australia Post had a consolidated revenue of at least $100
 million for the reporting period.

 4) Was Australia Post a company during the reporting period?
 ** forget 3

 3) Did Australia Post have a consolidated revenue of at least $100
 million for the reporting period?
 ** what

 1) The name of the entity is Australia Post.
 2) Australia Post is not an individual.

 3) Did Australia Post have a consolidated revenue of at least $100
 million for the reporting period?
 ** forget all

 1) What is the name of the entity?
 **

Goals

At the start of a session, if there is more than one goal rule (that is, more than one rule
is declared with the qualifier GOAL), cyscript will ask the user to choose from a list of
the available goal rules. At any point in the session, the user can also type goals, and
this will show the same set of goals and give the user an opportunity to keep the
current facts, but to pursue a different goal rule. If there is only one goal rule, or if the
user types goals all,103 the system will display a list of all available rules regardless
of whether or not they have been formally declared as a GOAL. If the user wishes to

103 The user can also type rules all and this will have the same effect.

Appendix 2 The cyscript Interpreter 125

pursue a particular goal and they know the rule name, they can type goal rule-name
where rule-name is an entire rule name or part thereof.

For example:

 The following goals are defined:

 1) Modern Slavery Act 2018 (Cth) Section 4 "Australian entity"
 2) Modern Slavery Act 2018 (Cth) Section 5
 3) Modern Slavery Act 2018 (Cth) Section 12
 4) Modern Slavery Act 2018 (Cth)

 Please select a goal?
 ** 2

 1) What is the name of the entity?
 ** Queensland Rail

 2) Is Queensland Rail an individual?
 ** n

 3) Did Queensland Rail have a consolidated revenue of at least $100
 million for the reporting period?
 ** goals

 The following goals are defined:

 1) Modern Slavery Act 2018 (Cth) Section 4 "Australian entity"
 2) Modern Slavery Act 2018 (Cth) Section 5
 3) Modern Slavery Act 2018 (Cth) Section 12
 4) Modern Slavery Act 2018 (Cth)

 Please select a goal?
 **

Rules

The command rules all is equivalent to goals all (and will display a list of all rule
names and allow the user to select one as the current goal). The command rule rule-
name is like goal rule-name but searches all rules for one matching rule-name. Typing
rule by itself will display a list of rules that are currently being considered.

For example:

 1) What is the name of the entity?
 ** ANZ

 2) Is ANZ an individual?
 ** n

 3) Did ANZ have a consolidated revenue of at least $100 million for
 the reporting period?
 ** y

 4) Was ANZ a company during the reporting period?
 ** rules

 Modern Slavery Act 2018 (Cth)
 Modern Slavery Act 2018 (Cth) Section 5
 Modern Slavery Act 2018 (Cth) Section 5(1)

Coding with yscript Appendix 2 126

 Modern Slavery Act 2018 (Cth) Section 5(1)(a)
 Modern Slavery Act 2018 (Cth) Section 5(1)(a)(i)
 Modern Slavery Act 2018 (Cth) Section 4 "Australian entity"

 Income Tax Assessment Act 1936 Section 6 "resident" (1)(b)

Typing just the command rule will display the complete text of the current rule that
is being evaluated. In a similar fashion to the why command, issuing more than once
will step back through the rule stack.

For example:

 3) Did ANZ have a consolidated revenue of at least $100 million for
 the reporting period?
 ** rule

 RULE Modern Slavery Act 2018 (Cth) Section 5(1)(a) PROVIDES
 section 5(1)(a) applies ONLY IF
 the entity had a consolidated revenue of at least $100
 million for the reporting period AND
 section 5(1)(a)(i) applies AND/OR

 section 5(1)(a)(ii) applies

Where you know the name of the rule you wish to display, you can also always display
any rule with the command show rule rule-name, for example:

show rule section 5(1)

Verbose Mode

cyscript can be put into verbose mode either by invoking it with the -d (or --debug) flag
or by typing the command verbose. Verbose mode can be toggled off and on by typing
verbose again. The effect of verbose mode is to display system actions.104 For example:

 1) What is the name of the entity?
 ** verbose

 1) What is the name of the entity?
 ** Sydney Water

 * DETERMINED VALUE FOR the name of the entity
 * FORWARD-CHAINING FOR the name of the entity
 * FIRING Entity is Commonwealth of Australia

 2) Is Sydney Water an individual?
 ** no

 * DETERMINED VALUE FOR the entity is a person
 * FORWARD-CHAINING FOR the entity is a person
 * FIRING Individuals and Companies are not trusts

104 There is a list of verbose messages in the following section on page 135.

Appendix 2 The cyscript Interpreter 127

Load and Save

The save and load commands will save the current goal and facts to and from a file
(respectively). For example:

 2) Is BHP an individual?
 ** save myfacts

 2) Is BHP an individual?
 ** load myfacts

3. Error and Warning Messages

yscript generates various types of messages: parsing errors, session messages, verbose
messages, fatal errors, and internal errors. This section explains what each message
means. Each group is sorted for ease of look-up.

Parsing Errors

Parsing errors can be produced when a new or changed piece of code is first read by
the interpreter. They indicate that something is syntactically or semantically wrong in
the source file. Each message is preceded by a file name and an approximate line
number as to where the error was encountered. For example:

gaming.ys: 23: expected factor before end of expression

Only the first error for each block (that is, fact declaration or rule) is displayed. The
complete list of error and warning messages is as follows:

alias redeclared

A fact has been declared with more than one document-assembly alias (via the ALIAS
sub-declaration).

AND or AND/WITH argument(s) not boolean
AND/OR argument(s) not boolean

One or more of the arguments to an AND or AND/OR operator in an expression does not
return a boolean result.

arithmetic expression has incompatible units
arithmetic term has incompatible units
assignment to '%s' involves incompatible units

An expression or an assignment involves values that have units that cannot be used
together. For example, it is illegal to add a weight to a length or a time to volume.

attempted assignment to constant

The left-hand-side of an assignment is a constant and not a fact.

Coding with yscript Appendix 2 128

bad multi-assignment

This error occurs when parsing assertions forming part of a multiple assignment. It
probably indicates a trailing AND keyword that is missing a following fact name.

bad statement

The parser was expecting the start of a new statement such as an assignment or an IF-
THEN-ELSE. The error generally indicates a malformed expression on the previous line.

bad WEEKS/MONTHS/YEARS type

The WEEKS, MONTHS and YEARS post-unary operators can only be applied to a number. The
factor preceding one of these keywords is producing a non-numerical result.

DAY/MONTH/YEAR applied to non-date

When used as a pre-unary operator, the WEEKS, MONTHS and YEARS operators can only be
applied to a factor yielding a DATE.

declaration hides shared fact

This is only a warning message. It is warning you that you have formally declared a
fact, which will hide access to a fact with the name in the shared context. If this was
intended, then you can safely ignore this message.

declaration of boolean expressed in negative

This is warning message indicating that you have used a proposition that is expressed
in the negative when declaring a fact. The actual fact name will be changed to convert
this into positive form.

default not last CASE condition

The default case must be the last WHEN condition in a CASE statement.

expected ALL or fact name after FORGET

The FORGET keyword is not followed by the keyword ALL or the name of a fact to be
forgotten.

expected block start

The parser was expecting to see a new rule or fact definition. This will generally appear
as the first error message and usually indicates that you are using a word-processor
and have saved the file in binary format or that the file is not yscript code at all.

expected CASE before WHEN

The parser has encountered a WHEN condition without being preceded by a CASE. It is
only legal to skip the CASE/fact specification as the first statement in following a FACT
(object) declaration.

Appendix 2 The cyscript Interpreter 129

expected constant after EXPLAIN
expected constant after TRANSLATE
expected constant after WHEN

This error generally indicates that an EXPLAIN, TRANSLATE or WHEN keyword has been
followed by a fact name rather than a constant.

expected context
expected context name

This error occurs in either a fact declaration or a CALL statement where you have
indicated that you are referring to something from another context with the FROM
keyword, but you are missing the name of the context itself. Deleting the FROM keyword
will fix this.

expected description after AS

This error indicates that you have not included a text description following the AS
keyword.

expected example name not constant

You have attempted to use a constant instead of a name for an EXAMPLE.

expected fact name after CASE

The CASE keyword must be followed by a fact name. This error indicates either a
missing fact name or attempted use of a constant.

expected fact name after DETERMINE

The DETERMINE statement requires the name of a fact. Again, this might indicate that
you have attempted to determine the value of a constant.

expected factor

This error message indicates a malformed expression. The parser was expecting to see
a factor (that is, a fact or a constant) and instead has found something else (for
example, a keyword).

expected factor before end of expression

This error is like the previous message but indicates that the parser ran out of
expression when it was trying to parse a factor. A typical way to generate this message
is to put a trailing operator (for example, an AND) on the end of an otherwise valid
expression.

expected GOAL, RULE, or rule type

This error indicates a malformed RULE declaration. It is normally generated if you
attempt to make something other than a rule (e.g., a fact) a goal.

Coding with yscript Appendix 2 130

expected number after LEVEL

A PARAGRAPH, LINE or TEXT statement is malformed. You have used the LEVEL keyword
without following it by a literal number in the range 1 to 7.

expected rule name not constant

A rule name cannot start with a number or be some other constant.

expected RULE or rule type

You have started introducing a new rule with the GOAL keyword, then failed to follow
it with the RULE keyword or a rule type.

expected STYLE after DEFAULT DATE
expected STYLE after DEFAULT NUMBER
expected STYLE after DEFAULT TIME

The parser was expecting the keyword STYLE after a DEFAULT declaration.

expected text after SAY

The SAY keyword must be followed by the text to be displayed. This can be within or
without quotes.

expected UNIT after DEFAULT MONEY

The parser was expected the sequence DEFAULT MONEY UNIT unit. You have possibly
attempted to assign a MONEY STYLE which is currently unsupported.

expected WHEN after CASE

You have attempted to use a CASE statement with no WHEN conditions. This probably
indicates a syntax error immediately after the WHEN fact name.

fact already has associated rule

You have attempted to add two or more sets of statements to a fact / object.

guard is not boolean

The condition for an IF statement does not return a boolean result. You may need to
formally declare some of the facts involved in the conditional expression.

illegal assignment to 'fact-name'

The right-hand side of an assignment (that is the expression after the ONLY IF or IS)
returns a value which is of an incompatible type with the target fact. Again, this only
happens after an attempt has been made to coerce the type of facts involved in the
expression and so you made need to formally declare and type facts.

Appendix 2 The cyscript Interpreter 131

illegal example body

Examples do not share the same syntax as other rules. They can only consist of a single
IF-THEN-ELSE statement or an assignment. Read the documentation about examples in
Chapter 7.

inappropriate terms for DIVIDE
inappropriate terms for MINUS
inappropriate terms for MOD
inappropriate terms for PLUS
inappropriate terms for TIMES

You have attempted to perform a mathematical function on a non-numeric value. The
DIVIDE, MINUS, MOD, PLUS and TIMES binary operators can only be used with the following
exceptions: STRINGs can be concatenated with PLUS; and numbers can be added to and
subtracted from DATEs.

inappropriate terms for relational operator

A relational operator is a comparative operator such as LESS THAN, GREATER THAN or
EQUALS. The message indicates that the arguments cannot sensibly be compared. You
may need to formally declare fact types.

LEVEL argument too large

The number following the level portion of the PARAGRAPH, LINE or TEXT statement must
be between 1 and 7.

missing ALIAS descriptor

You have used the ALIAS sub-declaration within a fact but have not followed it by a
fact descriptor.

missing context name

You have started a new context with the CONTEXT keyword, but you have not given it a
name.

missing fact description after DETERMINE

The DETERMINE keyword must be followed by the name of a fact.

missing default date format
missing default money unit
missing default number style
missing default time format

A DEFAULT declaration is missing the actual unit or style.

missing END

The parser was expecting the keyword END. This probably indicates a mis-matched
BEGIN-END pair.

Coding with yscript Appendix 2 132

missing EXPLAIN text

The text block for an EXPLAIN sub-declaration is missing.

missing fact name

You have started formally declaring a fact by using a type name (e.g. BOOLEAN, STRING
etc) and you have not followed it by a fact name.

missing factor

This error message indicates a malformed expression. The parser was expecting to see
a factor (that is, a fact name or constant) and instead it found a keyword that is not a
pre-unary operator.

missing include file name

You are missing the file name after an INCLUDE keyword. This may be optionally in
quotes.

missing INFO text

An INFO sub-declaration is not followed by a text block.

missing keyword AS after EXPLAIN
missing keyword AS after TRANSLATE
missing keyword DO
missing keyword END
missing keyword IF after ONLY
missing keyword PROVIDES
missing keyword THEN
missing keyword UNTIL

The indicated keyword is missing.

missing PARAGRAPH, LINE or TEXT

You have used NUMBERED or LEVEL and have not then gone on to use PARAGRAPH, LINE or
TEXT.

missing PROMPT text

You have used the PROMPT keyword within a formal fact declaration, but you have not
followed it by the prompt text.

missing rule name after CALL
missing rule name after NEXT

The name of the rule to call has been omitted after a CALL or NEXT statement.

missing STYLE type

You have not included a style type following the STYLE keyword.

Appendix 2 The cyscript Interpreter 133

missing text

The parser has found a PARAGRAPH, TEXT, or LINE statement, but this is not followed by
any text to write.

missing TRANSLATE text

You are missing the translation text after a TRANSLATE declaration.

missing UNIT type

You have not included a unit type following the UNIT keyword.

named subjects can't have translations or ranges

You have attempted to provide a translation or range for a named subject which is
illegal. You can translate the related facts such as the name, gender, and preferred
address of the named subject.

no rules!

You have passed yscript a syntactically correct (or empty) file which doesn’t declare
any rules. The interpreter has nothing to do.

non-boolean assignment to 'fact-name'

You have attempted to assign a non-boolean value to a boolean fact. This may indicate
that the fact should be formally declared as something other than BOOLEAN.

NOT value not boolean
OR argument(s) not Boolean

The argument(s) to a NOT or OR operator are not boolean and cannot be coerced to be
so.

out of expression space

You have used an expression which is too complex for the system to handle. Try
dividing the expression into smaller units (and preferably distribute it between several
different rules).

rule undefined

You have used CALL to call a rule that you have not declared.

rule/range too large/complex

The rule body or range has produced too many tokens for the code-generator to deal
with at once. Try dividing the contents between more rules.

Coding with yscript Appendix 2 134

SECOND/MINUTE/HOUR applied to non-time

You have attempted to use one of the pre-unary operators – SECOND, MINUTE or HOUR to a
value which is not of the type - TIME.

style redeclared

You have attempted to declare the style for a fact.

too many WHEN conditions for CASE

There is a hard limit of 4096 when conditions for any individual CASE statement.

unit redeclared

You have attempted to redeclare the unit for a fact.

unknown currency - '%s'

You have used an unknown currency unit. See § 3.7 at page 29 for a list of units.

unknown default number style - '%s'
unknown number style - '%s'

You have used an unknown numbering style. See Figure 20 – Numerical Styles on
page 23.

unknown unit - '%s'

You have used an unknown unit name. See § 3.7 at page 29 for a list of units.

UNTIL guard is not boolean
WHILE guard is not Boolean

The condition to a REPEAT or WHILE statement is non-boolean. Try formally declaring
some of the facts.

Session Errors

Session errors are produced in response to user interaction with the cyscript
interpreter. Their meaning is intended to be straight-forward, but for the sake of
completeness are listed and briefly explained here.

Bad parameter for forget.

You have tried to forget a fact that is not yet known. Use the - what command to see
the valid fact numbers.

Bad parameter for how.

You have tried to show how a conclusion has been concluded before it has been
concluded. Try using so to see how many conclusions have been reached.

Appendix 2 The cyscript Interpreter 135

Load failed.

You tried to load a set of facts from a file that either does not exist, is unreadable or is
corrupt.

No conclusions have been reached.

You have issued a so command and no conclusions have yet been reached.

No facts have been supplied.

You have issued a what command and no facts have yet been supplied.

Rule not found.

The full or partial name of the rule that you have specified as an argument to the rule
command could not be found.

Save failed.

You have tried to save the current facts to a file and the write failed.

The value is out of range.

You have entered a value that is out of range. Normally you will get a more helpful
message that tells you what the valid range is!

There are no other facts under consideration.

You have issued a why command or, more probably a series of why commands and there
is no further explanation available to explain why a question is being asked105.

Verbose Messages

Verbose messages can be either turned on at invocation with the -d flag or toggled on
and off with the verbose command during a user session. They are intended to let you
know what the system is really doing with your rules.

BACKWARD-CHAINING FOR

The system is backward chaining to find a value for a new goal fact. It will invoke each
rule that potentially can conclude a value for the fact until these are exhausted, or a
value is found. If along the way, it needs the values of other facts these will recursively
become goal facts.

105 For many years this message was “Planet Earth is blue and there is nothing I can do” which was meant to
express the same level of exasperation that parents often feel when a young child just keeps asking “why?”.

Coding with yscript Appendix 2 136

BLOCKED

The system has blocked a rule from firing because the rule is already being executed
as part of the current set of rules being executed. If rules did not block, then an infinite
loop would result.

CALLING

A rule has been explicitly called with a CALL statement. It is fired regardless of whether
it is needed to derive a value for any of the goal facts.

CHANGED VALUE FOR

The value of a fact has been changed. This is unusual and reflects some procedural or
imperative element in the code.

DETERMINED VALUE FOR

The value of a fact has been determined. If it was a goal fact, it will be popped off the
goal stack and its predecessor will become the current goal.

DETERMINING

A value for a fact is being determined. This is a result of it being a goal fact.

EFACT RETURNED VARIANCE OF

This indicates the overall variance of a fact that is involved as an attribute of an
example set.

EXAMPLE RETURNED SCORE OF

This number reflects the overall score of a particular example given the current set of
facts / attributes.

FIRING

A rule is being fired. This can be the result of backward or forward chaining or can
reflect that a rule has been specifically called.

FORGOT

The value of a fact has been forgotten. This will usually result in an attempt by the
system to immediately recalculate.

FORWARD-CHAINING FOR

The system is firing a rule because one of its premises has become known. This will
normally only happen if a rule is specifically tagged as being FORWARD.

Appendix 2 The cyscript Interpreter 137

Fatal Errors

Fatal errors can occur on invocation, during parsing / code-generation and at run-
time. They indicate that something is fundamentally wrong and cause the interpreter
to exit.

filename: can't open

You have passed the interpreter the name of a code file (both with and without the .ys
extension) that does not exist or that cannot be opened.

popbuft: out of stack space
out of memory

Unless you are trying to run an enormous piece of code, these errors probably indicate
an internal error.

maximum recursion level reached

This error usually indicates some form of infinite loop such as a rule calling itself
unconditionally or a set of rules that operate together to produce a loop.

Usage: ys [-cdjnpstvxy] [--facts=facts] [--goal=rule-name] [--
templates=dir] [file[.ys] ...]

You have possibly got one of the flags wrong. Try ys --help for current usage.

Appendix 3 yscript 2.x Language Changes

Appendix 3: yscript 2.x Language Changes

This appendix sets out the changes to the yscript language between versions 1.x and
2.x. Changes are backwardly compatible and yscript code written in previous versions
revisions of the language should still work without needing to be modified.

Context [4.18]

The most fundamental change is the introduction of contexts. The aim of contexts is
to support large applications which need to be split into smaller self-contained and
largely independent pieces. yscript code can also now be contained in more than one
file. Each file may contain one or more contexts and conversely a context can be split
across files.

A context provides a separate namespace for rules and facts. Each context may be,
for example, an individual Act.

At the start of each new file, rules and facts are in the shared context and are available
in all other contexts in all files containing code. If you want to start a new context (or
add to one from another file), you include the keyword CONTEXT and the name of the
context, for example:

CONTEXT Electoral Act 1918 (Cth)

From this point, all new rule and fact names have their own namespace. If a fact exists
in the shared context, then that fact will be used unless it is explicitly declared in the
new context. Otherwise, you can have facts in two or more different contexts with the
same name but referring to different values.

If you want to refer to a fact from a different context, you need to associate the fact
with one in that context by declaring it as in:

CONTEXT Commonwealth Constitution
FACT the definition of "adult" under Schedule 1 FROM Acts Interpretation
Act 1901

The effect of this is that all references to the fact ‘the definition of “adult” under
Schedule 1’ will be to the version of this fact in the Acts Interpretation Act 1901 context.
References in both the Commonwealth Constitution context and the Acts Interpretation
Act 1901 context will refer to the same fact.

Embedded Facts [4.13]

Curly brackets are now used instead of angle brackets for embedded facts. This applies
to fact names, constants, and text. The reason for the change is to better support
document assembly and interfaces involving HTML or XML. The use of angle brackets
is deprecated but will still work to specify the default fact (i.e. {}, previously <>), in
templated rules and otherwise where the contents of the angle brackets refer to a fact

Coding with yscript Appendix 3 140

that is either explicitly or implicitly defined elsewhere. Otherwise, angle bracket
characters will be output as literals.

Markdown [8.2]

Text may now be formatted in Markdown. Markdown is a lightweight text formatting
language that allows for simple text markup to include things like **bold**, *italics*,
headings and lists. Output from the document assembly statements PARAGRAPH, LINE
and TEXT will now generate output in Markdown compatible format. For example:

DOCUMENT List Example PROVIDES
NUMBERED LEVEL 1 PARAGRAPH This section applies only if:
NUMBERED LEVEL 2 PARAGRAPH some sub-condition applies; and
NUMBERED LEVEL 3 PARAGRAPH some sub-sub-condition applies; or
NUMBERED LEVEL 3 PARAGRAPH some other sub-sub-condition applies; and
NUMBERED LEVEL 2 PARAGRAPH some other sub-condition applies.
NUMBERED LEVEL 1 PARAGRAPH The effect of not complying with 1 is whatever.

will produce:

1. This section applies only if:
> (1) some sub-condition applies; and
>> (a) some sub-sub-condition applies; or
>> (b) some other sub-sub-condition applies; and
>
> (2) some other sub-condition applies.

2. The effect of not complying with 1 is whatever.

Attachments [8.6]

Document assembly has been extended by templates and attachments. A template is a
file that has been marked up in the new DataLex format or with Jinja2 and which uses
facts from yscript to insert names, dates and places into documents. Templates, reports
and documents can be attached to a fact and will be displayed when a value for the
fact is determined. For example:

FACT the client has a cause of action
ATTACH REPORT AS "Legal Advice"
ATTACH DOCUMENT AS "Letter to Client"
ATTACH TEMPLATE form.docx AS "Statement of Claim"

Named Subjects [4.15]

The related facts for named subjects have changed. The named subject is a natural
person related fact becomes just: the named subject is a person. The type and usage of
the gender fact changes from SEX to GENDER and the sex of the named subject is now the
gender of the named subject. Finally, for named subjects of type PERSON and PERSON-

Appendix 3 yscript 2.x Language Changes 141

THING106, there is an additional related fact: the form of address for the named subject.
The following table compares the old related facts to the new ones:

Old Related Fact New Related Fact

STRING the name of the named subject STRING the name of the named subject

BOOLEAN the named subject is a
natural person

BOOLEAN the named subject is a person

SEX the sex of the named subject GENDER the gender of the named subject

 STRING the form of address for the named
subject

The gender and form of address related facts also have default prompts and translations
as follows:

GENDER the gender of the named subject
PROMPT what is the named subject's preferred gender
TRANSLATE unspecified AS the named subject's preferred gender is <>

STRING the preferred form of address for the named subject

 PROMPT what is the named subject's preferred form of address
TRANSLATE AS the named subject's preferred form of address is {}

There is legacy support translate the old type SEX to be replaced by GENDER, and to
map the old fact names to the new ones.

Three qualifiers have been added for named subjects: GENDER-NEUTRAL, INFORMAL and
UNNAMED. GENDER-NEUTRAL named subjects don't ask for a preferred gender and do not use
pronouns. INFORMAL named subjects don't ask for a preferred form of address. UNNAMED
uses a name only once, and then reverts to using only the name of the named section
itself or pronouns.

New Type Names [3.5]

The REAL type has been renamed NUMBER. DOLLAR has become MONEY. By default, a MONEY
type behaves like the old DOLLAR type and presents amounts as dollars. This can be
changed however by specifying a UNIT or by setting the default MONEY unit with the
DEFAULT MONEY UNIT declaration. The GENDER type can hold any string value.

Currencies and Units of Measurement [3.7]

All numeric values (NUMBERS, INTEGERS and MONEY) can be associated with a unit of
measurement or a currency. They can also have a numbering style. Dates and times
may also have styles.

106 PERSONTHING may now also be written as PERSON-THING (preferred).

Coding with yscript Appendix 3 142

New Fact Qualifiers [0]

Two qualifiers have been introduced to fact declarations: UNREPORTED and SYSTEM. An
UNREPORTED fact will be excluded from the final report. A SYSTEM fact will not be included
in the explanation of any conclusion and will not be returned on a list of premises or
conclusions.

Explanations [4.14]

Facts may now have optional “explanations”. An explanation is a piece of text that is
associated with the fact generally (the "default explanation") or with particular values
for the fact. Explanations are attached to facts in a similar fashion to translations. They
should follow a fact declaration and have the form:

 STRING the type of gaming activity that you are proposing
 EXPLAIN AS The Community Gaming Regulations 2020 regulate the
 Conduct of gambling for social, charitable, and non-profit purposes
 in NSW. The Regulations provide for 11 types of permitted gaming activities.
 EXPLAIN Art union AS You will now be asked a series of questions to see
 see whether or not your proposed activity is covered by the "Art
 Union gaming activity" provisions which are contained in regulation 4.

The default explanation is displayed when the system needs to prompt the user for a
fact value or when a value for the fact is first determined. It is intended to add
additional explanatory material to help the user answer the question. The value-based
explanations are intended to be display either after a value has been provided by the
user or (depending on the interface) when the user is considering answering a
question in a particular way (such as by hovering over an option in a graphical
presentation).

CASE-WHEN-THEN Statement [5.3]

A new CASE-WHEN-THEN statement has been added. The syntax is:

CASE fact-name { WHEN constant-value | DEFAULT [THEN] statement }

This is useful when dealing with multi-value user input. Where the constant-values are
all strings, then fact-name will automatically be RANGE restricted to these values (which
will also result in a multiple-choice type question).

Objects [6.8]

You can create a procedure with the same name as a fact by following a fact declaration
with one or more statements. If this statement is a CASE statement, it will assume the
name of the fact and the first part of the statement can be omitted. This is helpful when
implementing decision-trees and chat-bots.

Appendix 3 yscript 2.x Language Changes 143

For example:

FACT you wish to get divorced
WHEN true NEXT you are married
WHEN false THEN you may get divorced at any time following 2 years
separation

FACT you are married
WHEN true you have been separated from your partner for 2 years
WHEN false THEN you cannot be divorced

FACT you have been separated from your partner for 2 years
WHEN true THEN you can apply for a divorce
WHEN false THEN you must be separated for 2 years to get a divorce

New Assignment Syntax [5.1]

The syntax for assignments has changed to allow for AND separated multiple
assignments that will be treated as a single statement. In previous versions, the
assignment statement syntax was:

[ASSERT | AND] fact-descriptor [IS expression]

The new assignment statement syntax is:

 [ASSERT] fact-descriptor { AND fact-descriptor } |
 [ASSERT] fact-descriptor IS expression

The reason why the keyword AND was previously allowed as a synonym for ASSERT was
to permit usage such as:

 you should take an umbrella AND
 you should take your gumboots

This was confusing when used in conditionals that allowed control of a single
statement (for example, IF-THEN-ELSE and WHILE) because the second assertion was the
next statement after the conditional one.

For example:

IF it is raining THEN
 you should take an umbrella AND
 you should take your gumboots

was previously (and non-obviously) interpreted as:

 IF it is raining THEN
 you should take an umbrella
 ASSERT you should take your gumboots

The statement is now equivalent to:

 IF it is raining THEN BEGIN
 you should take an umbrella AND
 you should take your gumboots
 END

Coding with yscript Appendix 3 144

FORGET Statement [5.9]

The FORGET command can be used to forget the value of facts. The syntax is:

FORGET ALL | fact-name

When the ALL keyword is specified, the value of all facts will be forgotten, and the user
consultation will restart. Where a fact-name is given, the value of that fact and all
subsequently determined facts will be forgotten. Care needs to be taken to only apply
this to facts that have already been determined.

EXIT Statement [5.11]

The EXIT statement causes the system to exit. The syntax is:

EXIT [SESSION]

When followed by the keyword SESSION, the current session is terminated, and control
is returned to the calling environment. For cyscript, this will result in the "Another
problem?" prompt. Without the SESSION keyword, the statement causes an immediate
exit. All outstanding messages are ignored, and the calling environment is terminated.

SAY Statement [5.10]

The SAY statement causes an associated text message to be displayed before the next
prompt. This is only useful in procedural code or for debugging. Otherwise, the
command will be executed each time a RULE is fired.

INCLUDE Directive [5.12]

The new INCLUDE directive allows the contents of a file to be included at any point in
the code. In the DataLex environment, this directive is pre-processed to extend what
can be included to URIs.

Comments [3.3]

In addition to existing C-style multi-line comments, single line comments may now
also be used. Anything after // on a line will be ignored.

Ranges [4.10]

cyscript (the name of the default command line interpreter) now displays a multiple-
choice list of options when a fact has a range of a set of discrete values. The DataLex
interface also does this. See gaming.ys for an example107. The range error messages have

107 See page 187.

Appendix 3 yscript 2.x Language Changes 145

been improved to describe the range automatically, and a new facility to allow
translation of the required range error message has been added via an extension to the
TRANSLATE declaration.

For example:

TRANSLATE RANGE AS please enter a number from 1 to 100

Facts [4.3]

Facts may now have a tilde in them to specify where the verb is / how to split the
proposition into a subject and a predicate. For example:

profits~exceed expectations
the government~reports a likely deficit

The tilde is part of the name of the fact but is not displayed (except in the code itself
of course). Use of this approach should be used sparingly.

SUBRULE Alternative to CALL [5.6]

A new keyword – SUBRULE has been added as an alternative for CALL. This allows
for more natural syntax when working with legislation.

VERBS Generally Unnecessary [4.3]

A much larger verbs dictionary (6,000 words in four forms)108 has been added. The
VERBS statement is now generally unnecessary. The old tilde (~) separated format is
deprecated (but still available) and replaced with a more straightforward piped (|)
format.

For example:

 VERBS foresee|foresees|foresaw|foreseen

LISTED and UNLISTED Deprecated [6.3]

The LISTED and UNLISTED qualifiers to a RULE declarations have been deprecated. For
backward compatibility, LISTED without being followed by GOAL is now interpreted as
just GOAL. UNLISTED is totally ignored.

108 The verbs list is contained in the source file “verbs.h”.

Coding with yscript Appendix 3 146

Lexical Changes

Strings can now use single quotes as well as double quotes. Values and text for
TRANSLATIONs may now be quoted or unquoted. Descriptors including fact names and
constants may contain any Unicode characters in UTF-8 format.

Whilst not encouraged, the lexical analyser will translate UTF-8 double and single
quotes, em and en dashes and non-breaking spaces to their ASCII equivalents where
these symbols are lexically significant (for example, to designate a string).

DataLex Declarations

DataLex LINK and DEFAULT statements are parsed and ignored. It is a good idea to
continue excluding non-yscript extensions with comment tags, for example:

/*
DEFAULT ACT Modern Slavery Act 2018
*/

Interactive Commands

The goal and rule commands in cyscript have been extended:

goals show all defined goals or all rules if no goals defined
goals all show all rules and allow session for any of these
goal pattern change current goal to first goal with name including pattern
rule pattern change current goal to first rule with name including pattern
rule show the source of the rule under consideration
rules show the hierarchy of all rules under consideration
rules all same as "goals all"
show fact show the name of the current fact
show rule pattern show a specified rule
why this display the first why explanation (only)

Appendix 4 Formal Grammar 147

Appendix 4: Formal Grammar

code = block { block }

block = context | defaults | example | fact-declaration | include | order | rule |
verbs

context = CONTEXT context

defaults = DEFAULT generic-type STYLE text

fact-declaration = [GOAL] fact-type descriptor [FROM context] [PROVIDES]
 { attachment | explanation | info | prompt | range | translation }

[statements]

fact-type = [qualifier] [type FACT | FACT]

qualifier = SYSTEM | UNREPORTED | UNNAMED | INFORMAL | GENDER-NEUTRAL

attachment = ATTACH [DISPLAYED] [qualifier] REPORT|DOCUMENT|TEMPLATE name [AS
description]

explanation = EXPLAIN [UNKNOWN | value] AS text

info = INFO text

prompt = PROMPT text

range = RANGE arith-term [TO arith-term]

translation = TRANSLATE [RANGE | UNKNOWN | value] AS text

fact-type = generic-type | named-subject

generic-type = BOOLEAN|DATE|GENDER|INTEGER|MONEY|NUMBER|STRING

named-subject = PERSON | THING | PERSON-THING

verbs = VERB | VERBS descriptor

include = INCLUDE file-name

example = example-header example-body

example-header = [GOAL] EXAMPLE [RULE] [descriptor] PROVIDES

example-body = IF bool-expr THEN assignment

order = ORDER descriptor { THEN descriptor }

rule = rule-header statements

rule-header = [GOAL] rule-type [RULE] [descriptor] PROVIDES

rule-type = BACKWARD|DAEMON|DOCUMENT|FORWARD|PROCEDURE|RULE

statements = statement { statement }

Coding with yscript Appendix 4 148

statement =
assignment|call|case|determine|exit|forget|if|include|repeat|say|while|write|
 BEGIN statements END

assignment = [ASSERT] descriptor { AND descriptor } |

 descriptor IS|ONLY IF expression

call = CALL | SUBRULE | NEXT [GOAL] descriptor [FROM descriptor]

case = CASE descriptor { WHEN descriptor [THEN] statement }

determine = DETERMINE descriptor

exit = EXIT [SESSION]

forget = FORGET ALL | descriptor

if = IF expression THEN statement [ELSE statement]

say = SAY text

repeat = REPEAT statements UNTIL expression

write = [NUMBERED] [LEVEL number] PARAGRAPH|LINE|TEXT text

while = WHILE expression DO statement

expression = bool-expr { OR|OR/WITH bool-expr }

bool-expr = and-or-expr { AND|AND/WITH and-or-expr }

and-or-expr = rel-expr { AND/OR|AND/OR/WITH rel-expr }

rel-expr = arith-expr { [IS] rel-op [THAN|TO] arith-expr }

arith-expr = term { PLUS|MINUS } term

term = factor { TIMES|DIVIDED [BY] } factor }

factor = {pre-unary-op} descriptor [post-unary-op]

rel-op = LESS|GREATER|LESSEQUAL|GREATEREQUAL|EQUAL|EQUALS|NOT EQUAL|NOT EQUALS

pre-unary-op = NOT|MINUS|PLUS|DAY|MONTH|YEAR|HOUR|MINUTE|SECOND|UNKNOWN

post-unary-op = DAY|WEEK|MONTH|YEAR|DAYS|WEEKS|MONTHS|YEARS|HOURS|MINUTES|SECONDS

Appendix 5 The yscript API 149

Appendix 5: The yscript API

yscript includes an API to a C language-based library. The standard distribution
includes a static and shared object version of the library as well as a Perl module and
separate library. The library/API should be usable from most other languages.
Examples are provided in this appendix for Python, Ruby, Perl, C++ and C. More
complete examples are provided for the cyscript code (contained in src/ys.c) and the
Perl implementation of cyscript – API/ys.pl.

Fundamental Routines

To create a yscript-based application, you need to call at least three basic routines:

• ys_load() or ys_load_files() to load one or more yscript code files

• a loop to call ys_evaluate() to start execution and to give the next fact prompt

• ys_get_report() to get a copy of the final report

ys_load() loads a single file containing yscript code, whereas ys_load_files() takes a
number and string vector containing the names of one or more files.

ys_evaluate() optionally specifies a starting goal, gives the value and known status of
the last current fact, and passes back a prompt and a type for the next current fact.

ys_report() returns a pointer to the final report.

Applications should include the header file ysapi.h.

The core of an application using the API (in C) looks like:

 ys_load(filename);
 while (ys_evaluate(0, reply, YS_KNOWN_VALUE, prompt, &type) != 1) {

 fputs(prompt, stdout);
 fgets(reply, YS_MAXLINE, stdin);
 }
 ys_get_report(0);

Fuller examples of simple applications in C, C++, Perl, Python and Ruby are available
as ys-simple.c, ys-simple.cpp, ys-simple.pl, ys-simple.py and ys-simple.rb respectively.

A complete alphabetical list of all API calls follows:

Coding with yscript Appendix 5 150

Alphabetical List of API Calls

int ys_check_range(char * reply)

Check that a user reply is in range for the current fact. Returns 0 if valid or -1 if illegal.

int ys_check_type(char * reply, int type)

Check the type of a user reply. Returns 0 if valid or -1 if illegal.

int ys_clear_messages()

Clear all messages on the message queue. This will delete any pending explanations,
messages, and verbose messages.

int ys_conclusions_count()

Return the number of conclusions reached.

int ys_copy_facts(FILE * stream, char ** mem, int flags)

Copy facts to a file or memory. Flags are:

 YS_FACTS_ALL include conclusions
 YS_FACTS_ALIASES use alias if available
 YS_FACTS_ALIASES_ONLY only save facts with aliases
 YS_FACTS_INCL_GOAL include the current goal
 YS_FACTS_EXCL_CONTEXT don't include context info
 YS_FACTS_NON_BOOLEAN include only non-boolean and aliased facts
 YS_FACTS_IDENTIFY identify GOAL/FACT/VALUE lines
 YS_FACTS_UNDERSCORE replace spaces in fact names with underscores
 YS_FACTS_JSON output in JSON format

int ys_evaluate(char *goal, char *val, int known, char *prompt,int * type)

Start or continue a yscript session using "goal" as the goal rule (if not NULL). Returns 1
if the session is continuing and sets "prompt" to a string to ask the user for information
of type "type". The next time, ys_evaluate is called you should pass it the user response
as a string in "val" and its known status in "known". See below for value types and
known constants. If ys_set_askquestion() has been used to set a call-back to get user
answers, you should only have to call ys_evaluate once per session.

char * ys_explain(char * value)

Return an explanation associated with a fact for a "value". If "value" is NULL, return the
default explanation for the fact. If there is no associated explanation, return NULL.

int ys_forget(int number)

Forget a fact (that is, make a fact uncertain). When called with -1, forget all facts. After
a fact value is changed, it is important that the next call have a known value of
YS_KNOWN_UNKNOWN to cause the system status to be recalculated.

Appendix 5 The yscript API 151

char * ys_get_document(char * rule-name)

Return the document as a string (with newlines at paragraph ends). If rule-name is
NULL or empty, then use the current goal or the first rule if none.

char * ys_get_fact(int number, int premises)

Get a descriptor for fact "number" or the current fact if number is 0. Use
premises|YS_CONTEXT to return context information (i.e. context::fact-description).

char * ys_get_goal()

Return the name of the current goal rule or NULL if not set.

int ys_goal_count(int all)

Return the number of defined goal rules.

char * ys_get_how(int which)

Get an explanation as to how a conclusion was made.

char * ys_get_info()

Return hint/info for the current fact. Return NULL if not set.

int ys_get_next_message(char **message, char **desc, char ***info, int
*flags)

 Get the next "message" described as "desc" with optional "info" null terminated set of
strings and flags set as "flags" from the message stream and return the message type.
Returns -1 at end of list.

 Valid flags are:

 YS_ATTACH_DISPLAY attachment should be displayed

char * ys_get_prompt(int reset_pronouns)

Return a prompt for the current fact. If "reset_pronouns" is non-zero, use name (not
pronoun) for the first named subject in the fact.

char * ys_get_range_trans()

Get a translation for expected range. Returns NULL if there is none.

char ** ys_get_range_options()

Get a vector of individual valid range values (if in use else NULL)

char * ys_get_report(char * rule-name)

Return the final report as a string (with newlines at paragraph ends). If rule-name is
NULL or empty, then use the current goal or the first rule if none.

Coding with yscript Appendix 5 152

char * ys_get_rule(int level, int title_only, int indent)

Return a preformatted copy of the source for a rule at "level" on the rule stack (use
zero for the current rule). Use title_only|YS_CONTEXT to return information about
context i.e. context::rule-name

char * ys_get_rule_by_name(char * rule-name, int indent)

Return the text of a rule matching rule-name or pattern.

char * ys_get_why(int level)

Get a string explanation as to why a fact value needs to be determined.

int ys_load(char * filename)

Load a single yscript code file. Note use ys_load_files() for more than one file. Return
-1 on failure.

int ys_load_files(int filec, char ** filev)

Load "filec" yscript code files with names list in string vector "filev". Returns -1 on
failure.

int ys_load_facts(char * filename)

Load the current user facts/state from a file

char * ys_next_goal(int first, int all)

Get the next rule name or goal rule name, depending on "all". If "first" is set, then start
(again) at the first rule. Return NULL when at last rule or goal. "all" is 0 for the next GOAL
rule or 1 for the next RULE regardless of whether it is a GOAL rule. Use all|YS_CONTEXT to
return rule-name with context included (i.e. context::rule-name).

int ys_premises_count()

Return the number of premises that have been supplied.

int ys_rule_exists(char * pattern)

Check is a rule exists with a name containing "pattern". Returns non-zero on success.

int ys_rules_count()

Return number of rules under consideration (i.e., on rules stack).

int ys_save_facts(char * filename)

Save the current user facts/state to a file.

Appendix 5 The yscript API 153

void ys_set_askquestion(int(*p)(char* prompt,char* reply,int type, int x))

Set call-back to get an answer in "reply" to a question with "prompt" of "type". "x" is set
to non-zero for questions generated by yscript in case you want to use the routine for
your own questions.

int ys_set_goal(char * goal)

Set the goal rule. Return -1 if the rule does not exist or 0 otherwise.

char * ys_showall(FILE * stream, char ** string)

Write a complete formatted (pretty-printed) version of the code to a stream or a
dynamically allocated string.

char * ys_showtrans(FILE * stream, char ** string)

Write a list of all fact translations and prompts to a stream or string.

char * ys_showstats(FILE * stream, char ** string)

Write system statistics to a stream or a string.

char * ys_xref(FILE * stream, char ** string)

Write the fact cross-index to a stream or a string.

int ys_fpretty_print(FILE* stream,char** str,char* s, int left, int right)

Write a string "s" to a "stream" or a string ("str") formatted to have a left margin of
"left" spaces and a right line length of "right" characters. If "stream" is NULL then write
to "str" which should be a pointer to a NULL initialised character pointer. If "left" is less
than zero then don't format (just do screen pagination). If "right" is less than "left" use
screen width (80 characters).

int ys_pretty_print(char * s, int left)

Equivalent to ys_fpretty_print(stdout, NULL, s, left, -1).

int ys_pretty_no_pause(int on)

Turn pretty-print screen pagination on or off

Coding with yscript Appendix 5 154

API Constants

The constant YS_MAXTERM is defined in "ysapi.h" and is used for all internal string
buffers.

Valid fact types are:

 YS_TYPE_BOOLEAN "yes" or "no"
 YS_TYPE_DATE date (in any format)
 YS_TYPE_GENDER a string
 YS_TYPE_INTEGER positive or negative integer
 YS_TYPE_MONEY monetary amount
 YS_TYPE_NUMBER positive negative real
 YS_TYPE_STRING any string
 YS_TYPE_TIME time (in any format)

Valid "known" values are:

 YS_KNOWN_UNSPECIFIED user "uncertain" response
 YS_KNOWN_UNKNOWN known to be unknown
 YS_KNOWN_FALSE known to be false (booleans only)
 YS_KNOWN_TRUE known to be true (booleans only)
 YS_KNOWN_MALE known to be male (gender only)
 YS_KNOWN_FEMALE known to be female (gender only)
 YS_KNOWN_VALUE value is known

The following sections include simple examples of using the API from various
languages:

C / C++ API Example

/*
 * ys-simple.cpp / ys-simple.c -- simple C/C++ example using yscript API
 */

#include <stdio.h>
#include <string.h>
#include "ysapi.h"

int main(int argc, char* argv[])
{
 int type;
 char reply[YS_MAXLINE],
 prompt[YS_MAXLINE],
 full_prompt[YS_MAXLINE];

 ys_load_files(argc-1, &argv[1]);
 while (ys_evaluate(0, reply, YS_KNOWN_VALUE, prompt, &type) != 1) {

 snprintf(full_prompt, YS_MAXLINE, "\n%s\n** ", prompt);
 ys_pretty_print (full_prompt, 6);
 fgets(reply, YS_MAXLINE, stdin);
 }
 ys_get_report(0);
 return 0;
}

Appendix 5 The yscript API 155

Perl API Example

ys-simple.pl -- simple perl example using the yscript API

use ys; # API api module

ys::ys_load_files($#ARGV+1, \@ARGV); # load source file(s)

do {
 ($retval, $prompt, $type) =
 ys::ys_evaluate("", $reply, # evaluate / get next question
 $ys::YS_KNOWN_VALUE); # until done
 if ($retval != 1) {
 ys::ys_pretty_print("\n$prompt\n** ", 6);
 $reply = <STDIN>;
 }
} while ($retval != 1);

$report = ys::ys_get_report(""); # show the report
ys::ys_pretty_print("$report\n", 6);

Python API Example

ys-simple.py -- simple yscript api example for python 2.x/3.x using ctypes

from sys import *
from ctypes import * # use ctypes

ys = CDLL("../libys.so") # load shared object library
and
 # set up api argtypes and restypes

 ys.ys_load.argtypes=[c_char_p]
ys.ys_evaluate.argtypes=[c_char_p, c_char_p, c_int, c_char_p, POINTER(c_int)]
ys.ys_get_report.argtypes=[c_char_p]
ys.ys_get_report.restype=c_char_p
ys.ys_pretty_print.argtypes=[c_char_p, c_int]

if len(argv) != 2:
 print("Usage: " + argv[0] + " filename[.ys]")
 exit(1)

ys.ys_load(argv[1].encode("utf-8")) # load yscript code file

prompt = create_string_buffer(4096)
type = c_int(0)
reply = b""
retval = 0
known = 0

while retval != 1: # evaluate and get user
answers
 retval = ys.ys_evaluate(b"", reply, known, prompt, byref(type));
 if retval != 1:
 myprompt = prompt.value.decode("utf-8")
 ys.ys_pretty_print(b"\n"+myprompt.encode("utf-8")+b"\n** ",6)
 reply = stdin.readline().encode("utf-8")

report = ys.ys_get_report(b"") # show report
ys.ys_pretty_print(b"\nREPORT\n\n" + report + b"\n\n", 6)

Coding with yscript Appendix 5 156

Ruby API Example

ys-simple.rb -- simple yscript api example for ruby using ffi

require 'ffi'

module YS
 extend FFI::Library
 ffi_lib 'c'
 ffi_lib '../libys.so'
 attach_function :ys_load, [:string], :int
 attach_function :ys_evaluate,[:string,:string,:int,:pointer,:pointer],:int
 attach_function :ys_get_report, [:string], :pointer
 attach_function :ys_pretty_print, [:pointer, :int], :int
end

reply = ""
prompt = FFI::MemoryPointer.new(:char, 4096)
type = FFI::MemoryPointer.new(:long)

YS.ys_load(ARGV[0])
while YS.ys_evaluate("", reply, 0, prompt, type) != 1
 YS.ys_pretty_print("\n", 6)
 YS.ys_pretty_print(prompt, 6)
 YS.ys_pretty_print("\n** ", 6)
 reply = $stdin.readline
end
YS.ys_pretty_print(YS.ys_get_report(""), 6)
YS.ys_pretty_print("\n", 6)

Appendix 6 Using cyscript as a Server 157

Appendix 6: Using cyscript as a Server

The main purpose of cyscript is to provide an interactive command-line based user
environment for running applications using the yscript interpreter. You can also use
cyscript as a server by placing it on a socket. In this mode, cyscript reads commands
on standard input and sends the results to a machine interface. To make things easier,
cyscript can generate output in the data serialization formats - JSON109 and YAML.110

The JSON and YAML interfaces have identical. Most computing languages have
libraries that support both formats. YAML is the more modern of the two standards
and is easier to read.

1. Invocation

To start cyscript as a server generating JSON, call it with the -j flag and to have it
generate YAML, call it with the -y flag. Apart from changing the type of output that
cyscript produces, either flag will also cause screen pagination to be supressed and for
more regular flushing of output streams. If you are going to be using external
document template files, you will probably also want to set the template directory
with the -T or --templates flag. For example, to invoke cyscript as a server using YAML
and setting the template directory:

 ys -y --templates=/usr/local/ys/templates application.ys

2. Commands

Input is identical in server and interactive cyscript modes. Each line of input is in
response to a question that is asked by the server. The same commands (such as why,
what, and so) can be issued in response to any question.

3. Output

Output will either be in JSON or YAML format depending upon how cyscript is
invoked. In both cases, the end of output is indicated by three dots ("...") on a line by

109 JSON is an acronym for JavaScript Object Notation and is an open standard file and data-serialization and
interchange format. JSON is a language-independent data format, but its syntax is derived from JavaScript object
notation. See <www.json.org> for further information.
110 YAML is a recursive acronym for YAML Ain’t Markup Language and is also a data-serialization language that is
commonly used for configuration files. It is a strict superset of JSON and includes syntax elements from Python,
Perl and C. See <http://yaml.org> for information.

Coding with yscript Appendix 6 158

themselves. In a sense, this replaces the prompt in interactive mode to say that the
server is waiting for input.111

JSON data consists of one or more objects which are enclosed by curly brackets. Each
object consists of one or more name/value pairs which are separated by commas. Each
name/value pair consists of a name in double quotes (sometimes called a key) followed
by a colon (':') and then a value. A value can be a null, a string, a number, a boolean, an
array or an object. Strings are in double quotes, null is just written as null, numbers are
numbers and booleans are true or false. Arrays are in square brackets.

YAML is a more complicated format than JSON. YAML data is inherently line based
and depends upon space-based indenting of text to indicate data structure.
Fundamentally it is similar to JSON in that the basic units of representation are
key/value pairs. Lines and indenting replace the need for curly and square brackets
and obviate the requirement for comma separators. Key/Value pairs are separated by
colons. YAML output is divided into documents which are indicated by a line
containing three dashes ('---').

The following example, shows the same yscript output in both JSON and YAML
format:

YAML JSON

question:
 number: 3
 type: boolean
 text: Did Telstra have a consolidated
 revenue of at least $100 million
 for the reporting period?

...
yes

question:
 number: 4
 type: boolean
 text: Was Telstra a company during the
 reporting period?

...
why

why:
 text: This will help determine whether
 or not Telstra was a company which
 was a resident within the meaning
 of subsection 6(1) of the Income
 Tax Assessment Act 1936 during the
 reporting period.

question:
 number: 4
 type: boolean
 text: Was Telstra a company during the

{
 "question" : {
 "number" : 3,
 "type" : "boolean",
 "text" : "Did Telstra have a consolidated
revenue of at least $100 million for the
reporting period?"
 }
}
...
yes
{
 "question" : {
 "number" : 4,
 "type" : "boolean",
 "text" : "Was Telstra a company during the
reporting period?"
 }
}
...
why
{
 "why" : {
 "text" : "This will help determine whether
or not Telstra was a company which was a
resident within the meaning of subsection 6(1)
of the Income Tax Assessment Act 1936 during
the reporting period."
 }
}
{
 "question" : {
 "number" : 4,
 "type" : "boolean",

111 Three dots formally indicate the end of a document in the YAML standard. Many parsers do not support this.
It is not part of the JSON standard. It is best separately parsed and regarded as a prompt.

Appendix 6 Using cyscript as a Server 159

 reporting period?
...

 "text" : "Was Telstra a company during the
reporting period?"
 }
}
...

4. Objects

All output consists of one of twenty different types of objects. As can be seen in the
above example, the most used object is "question" which indicates that the user is being
asked for the value of the numbered premise of a particular type with the prompt
indicated by text. The other object in the above example is "why" which contains a
response to a "why" command indicating the reason for asking the current question as
text.

The complete list of object values and their attributes is as follows:

attachments:
 text: intro-text
 list:
 - number: attach-number
 text: attach-desc

conclusions:
 list:
 - number: fact-number
 text: fact-description

document:
 text: |
 document-text

error:
 text: error-message

explanation:
 text: |
 explanation-text

fact:
 text: fact-name

file:
 name: file-name
 text: description

goals:
 text: text
 list:
 - number: goal-number
 text: rule-name

help:
 text: help-text

how:
 text: how-text

multi:
 text: prompt
 list:
 - option: letter
 text: text

premises:
 list:
 number: fact-number
 text: fact-description

question:
 number: fact-number
 type: type
 info: info-text
 text: prompt

report:
 text: |
 report-text

rule:
 text: |
 rule-text

rules:
 list:
 - level: level-number
 text: rule-name

template:
 file: file-name
 format: template-language
 facts:
 - fact-name: value

verbose:
 level: number
 text: message

whatif:
 text: text
 list:
 - conclusions

why:
 text: why-text

Coding with yscript Appendix 6 160

5. Detailed Object Description

This section sets out a description of each object and provides a brief example.

attachments

Syntax: attachments:
 text: intro-text
 list:
 - number: attach-number
 text: attach-description

Example: attachments:
 text: The following documents are
 available:
 list:
 - number: 1
 text: Record of Advice
 - number: 2
 text: Draft Non-Disclosure
Agreement
 - number: 3
 text: Letter to Client

The attachments object describes a list of attachment messages relating to reports,
documents and template documents that have been received because a value for a fact
with ATTACH declarations has been set. The text attribute is an introductory comment
to the list of attachments. The list itself consists of two or more objects each with a
number (which is just an ordinal count) and text which contains a brief description of
the attachments.

This object is only produced when there are two or more attachments which need to
be drawn to the attention of the user. The object will be followed by a question object
to deal with the numbered user response.

conclusions

Syntax: conclusions:
 list:
 - number: fact-number
 text: fact-description

Example: conclusions:
 list:
 - number: 1
 text: Google was a body corporate
 during the reporting period.
 - number: 2
 text: Section 5(2)(b) does apply.
 - number: 3
 text: Google was not a trust.

The conclusions object is produced in response to a so command. It includes a list of
facts that the system has concluded. The numbers can be used as arguments to the how
command.

Appendix 6 Using cyscript as a Server 161

document

Syntax: document:

 text: |
 document-text

Example: document:
 text: |
 1st July, 2021

 Henry Ford
 Ford Motor Co
 Detroit

 Dear Henry,

 Re: **Non-Disclosure Agreement**

The document object contains pre-formatted text that has been generated for a
document. Markdown formatting is maintained.

error

Syntax: error:
 text: error-message

Example: error:
 text: Please respond with yes or no.

The error object is produced whenever there is an error.112

explanation

Syntax: explanation:
 text: |
 explanation-text

Example: explanation:
 text: |
 This application will help you to
 determine if your proposed gaming
 activity fits within the legislative
 framework and whether or not you
 need formal approval.

The explanation object is generated either because a question is being asked about a
fact that has an EXPLAIN declaration or a fact has been determined for a fact which has
an explain declaration. The associated text may have associated Markdown elements.

fact

Syntax: fact:
 text: fact-name

Example: fact:
 text: |
 the gaming activity is a game in
 which prizes are awarded by lot

112 A full list of error messages is on page 127.

Coding with yscript Appendix 6 162

The fact object results from running the show fact command. The text attribute
contains the unmodified name of the current fact (that is, the one being asked about).

file

Syntax: file:
 name: file-name
 text: description

Example: file:
 name: /tmp/ys.qJO2j.docx
 text: Draft Non-Disclosure Agreement

The file object results when a user has requested to view a file. The name attribute
contains the file-name. This will be relative to the template directory if set by the -T
flag. The text tag contains a short description of the file.

goals

Syntax: goals:
 text: text
 list:
 - number: goal-number
 text: rule-name

Example: goals:
 text: The following goals are defined:
 list:
 - number: 1
 text: Competition and Consumer Act
 2010 Section 52A "covered News
 content"
 - number: 2
 text: Competition and Consumer Act
 2010 Section 52A "designated
 digital platform corporation"

The goals object can be generated at the beginning of a user session if no goal has been
set and there is more than one to choose from. It can also be generated in response to
the goals and rules all commands. The text attribute contains a short introductory
message. list is an array or list of objects consisting of a number which can be used to
select the goal in response to the next question and a text description of the goal or
rule.

help

Syntax: help:
 text: help-text

Example: help:
 text: Other valid responses are:
 forget, goals, how, quit, rule,
 so, uncertain, verbose, and why.

The help object results from running the help command. It just lists some of the
available commands.

how

Syntax: how:
 text: how-text

Example: how:
 text: Section 156(1)(b) of the
 National Law (Qld) does not apply
 because Dr Smith is not a
 registered student.

Appendix 6 Using cyscript as a Server 163

The how object results from running the how command. Your interface should normally
just display this for the user to see it.

multi

Syntax: multi:
 text: prompt
 list:
 - option: letter
 text: text

Example: multi:
 text: What is the type of gaming
 activity that you are proposing?
 list:
 - option: a
 text: Art union
 - option: b
 text: Housie or Bingo
 - option: c
 text: Draw lottery (including
 raffles and guessing
 competitions)

The multi object results from the need to ask the user a question with a set RANGE of
discrete values (either explicitly using RANGE or via a CASE-WITH-THEN statement). The
prompt is an over question prompt. list contains a set of objects with each option
indicating a different text response. The multi object will be followed by a question
object to gather the multi-choice response from the user.

premises

Syntax: premises:
 list:
 number: fact-number
 text: fact-description

Example: premises:
 list:
 - number: 1
 text: The name of the layout is
 Apple M1.
 - number: 2
 text: Apple M1 is a plan
 comprising a two dimensional
 representation.
 - number: 3
 text: Apple M1 is stored in a form
 from which it, or a substantial
 part of Apple M1, can be
 reproduced.

The premises object results from executing the so command. It lists all of the known
user-supplied facts by number and description (text).

question

Syntax: question:
 number: fact-number
 type: type
 info: info-text
 text: prompt

Example: question:
 number: 1
 type: string
 info: You should include the full name.
 text: What is the name of the nominee?

The question object is generated each time the user needs to provide an answer to a
question about the value of a fact or where some other value is necessary such as a
multi-choice or a goal. number is the fact number that can be used with forget or -1
where the question does not refer to a fact. The type is the type of value required. It is

Coding with yscript Appendix 6 164

one of: boolean, string, date, integer, money, number or gender. info is extra information
about the question that should be displayed when the user hovers over the question
or asks for more information. Your interface should display the prompt and return the
user response.

report

Syntax: report:
 text: |
 report-text

Example: report:
 text: |
 The Act does not apply because
 UTS/Fudan Exchange is not a "non-
 Core foreign arrangement" under the
 section 4 definition and it is not a
 "core foreign arrangement" under
 section 10(2).

The report object is generated at the end of a session or as a result of an attachment. It
contains pre-formatted text which could be in Markdown format. This should just be
displayed.

rule

Syntax: rule:
 text: |
 rule-text

Example: rule:
 text: |
 RULE Electoral Act 1918 – Section
 163(1)(b) PROVIDES
 section 163(1)(b) of the
 Electoral Act 1918 is satisfied
 ONLY IF
 the nominee is an
 Australian citizen.

The rule object is generated by the rule command. The text is pre-formatted and care
should be taken not to re-format it.

rules

Syntax: rules:
 list:
 - level: level-number
 text: rule-name

Example: rules:
 list:
 - level: 2
 text: Check overall compliance
 with Act
 - level: 1
 text: Section 4 – Definitions
 "non-core foreign arrangement"
 - level: 0
 text: Section 6 – Foreign
 arrangements

The rules object lists the rules that are under consideration by level and rule name
(text).

Appendix 6 Using cyscript as a Server 165

template

Syntax: template:
 file: file-name
 format: template-language
 facts:
 - fact-name: value

Example: template:
 file: nda.docx
 format: DataLex
 facts:
 the_governing_law: United States
 South Wales
 the_name_of_the_client: Elon Musk
 the_name_of_the_disclosing_party:
 Tesla
 address_of_the_disclosing_party:
 Palo Alto

The template object is generated where an attachment has been generated and the user
has selected to view or copy it. File is the name of the file template and the name will
be relative to the template directory if -T is specified. The format is one of DataLex or
Jinja2. DataLex templates only work with Word documents and can only be processed
with the DataLex environment. Jinja2 documents are generated automatically and do
not generate template objects.

verbose

Syntax: verbose:
 level: number
 text: message

Example: verbose:
 level: 1
 text: FIRING Check overall compliance
 with Act

verbose:
 level: 2
 text: BACKWARD-CHAINING FOR the name
 of the arrangement

Verbose objects describe system actions. They should only be displayed when the user
has specifically for this.

whatif

Syntax: whatif:
 text: text
 list:
 - conclusions

Example: whatif:
 text: The following conclusions will
 be drawn:
 list:
 - AustLII Lottery is not an art
 union gaming activity.
 - AustLII Lottery is not a permitted
 "art union gaming activity" under
 regulation 4.

The whatif object results from a whatif command. If only a single result will happen,
then no list is generated. text and the list of conclusions should normally be
displayed.

Coding with yscript Appendix 6 166

why

Syntax: why:
 text: why-text

Example: why:
 text: This will help determine whether
 or not section 5(1)(a) applies.

The why object results from the why command. text contains an explanation as to why
the current fact is being asked. This should normally just be displayed.

Appendix 7 yscript Code Examples 167

Appendix 7: yscript Code Examples

1. Commonwealth Constitution s44

 //
 // elect.ys – eligibility for Federal Parliament under s44
 // of the Australian Constitution and the Australian
 // Electoral Act

PERSON the nominee

GOAL RULE Eligibility for Nomination to Federal Parliament PROVIDES
 the nominee is entitled to be nominated for election to federal parliament

ONLY IF
 the nominee is entitled to be nominated under section 163
 of the Electoral Act 1918 AND
 section 164 of the Electoral Act 1918 does not apply AND
 section 44 of the Constitution does not apply

RULE Electoral Act 1918 - Section 163 PROVIDES
 the nominee is entitled to be nominated under section 163 of the
 Electoral Act 1918 ONLY IF
 section 163(1) of the Electoral Act 1918 is satisfied AND
 section 163(2) of the Electoral Act 1918 is not satisfied

RULE Electoral Act 1918 - Section 163(1) PROVIDES
 section 163(1) of the Electoral Act 1918 is satisfied ONLY IF
 section 163(1)(a) of the Electoral Act 1918 is satisfied AND
 section 163(1)(b) of the Electoral Act 1918 is satisfied AND
 section 163(1)(c) of the Electoral Act 1918 is satisfied

RULE Electoral Act 1918 - Section 163(1)(a) PROVIDES
 section 163(1)(a) of the Electoral Act 1918 is satisfied ONLY IF
 the age of the nominee IS GREATEREQUAL THAN 18 OR
 UNKNOWN the age of the nominee AND
 the nominee is 18 years of age or older

RULE Electoral Act 1918 - Section 163(1)(b) PROVIDES
 section 163(1)(b) of the Electoral Act 1918 is satisfied ONLY IF
 the nominee is an Australian citizen

RULE Electoral Act 1918 - Section 163(1)(c) PROVIDES
 section 163(1)(c) of the Electoral Act 1918 is satisfied ONLY IF
 section 163(1)(c)(i) of the Electoral Act 1918 is satisfied OR
 section 163(1)(c)(ii) of the Electoral Act 1918 is satisfied

RULE Electoral Act 1918 - Section 163(1)(c)(i) PROVIDES
 section 163(1)(c)(i) of the Electoral Act 1918 is satisfied ONLY IF
 the nominee is an elector entitled to vote at a House of
 Representatives election

RULE Electoral Act 1918 - Section 163(1)(c)(ii) PROVIDES
 section 163(1)(c)(ii) of the Electoral Act 1918 is satisfied ONLY IF
 the nominee is qualified to become an elector entitled to vote
 at a House of Representatives election

RULE Electoral Act 1918 - Section 163(2) PROVIDES
 section 163(2) of the Electoral Act 1918 is satisfied ONLY IF
 section 163(1) of the Electoral Act 1918 is not satisfied

Coding with yscript Appendix 7 168

RULE Electoral Act 1918 - Section 164 PROVIDES
 section 164 of the Electoral Act 1918 applies ONLY IF
 section 164(a) of the Electoral Act 1918 applies OR
 section 164(b) of the Electoral Act 1918 applies OR
 section 164(c) of the Electoral Act 1918 applies

RULE Electoral Act 1918 - Section 164(a) PROVIDES
 section 164(a) of the Electoral Act 1918 applies ONLY IF
 the nominee is a member of the Parliament of a State

RULE Electoral Act 1918 - Section 164(b) PROVIDES
 section 164(b) of the Electoral Act 1918 applies ONLY IF
 the nominee is a member of the Legislative Assembly of
 the Northern Territory of Australia

RULE Electoral Act 1918 - Section 164(c) PROVIDES
 section 164(c) of the Electoral Act 1918 applies ONLY IF
 the nominee is a member of the Legislative Assembly for
 the Australian Capital Territory

RULE Constitution - Section 44 PROVIDES
 section 44 of the Constitution applies ONLY IF
 section 44(i) of the Constitution applies OR
 section 44(ii) of the Constitution applies OR
 section 44(iii) of the Constitution applies OR
 section 44(iv) of the Constitution applies OR
 section 44(v) of the Constitution applies

RULE Constitution - Section 44(i) PROVIDES
 section 44(i) of the Constitution applies ONLY IF
 the nominee is under an acknowledgment of allegiance,
 obedience, or adherence to a foreign power OR
 the nominee is a subject of a foreign power OR
 the nominee is a citizen of a foreign power OR
 the nominee is entitled to the rights or privileges of
 a subject or a citizen of a foreign power

RULE Constitution - Section 44(ii) PROVIDES
 section 44(ii) of the Constitution applies ONLY IF
 the nominee is attainted of treason OR
 the nominee has been convicted and is under sentence or
 the nominee is subject to be sentenced, for any
 offence punishable under the law of the
 Commonwealth or of a State by
 imprisonment for one year or longer

RULE Constitution - Section 44(iii) PROVIDES
 section 44(iii) of the Constitution applies ONLY IF
 the nominee is an undischarged bankrupt OR
 the nominee is insolvent

RULE Constitution - Section 44(iv) PROVIDES
 section 44(iv) of the Constitution applies ONLY IF
 the nominee holds an office of profit under the Crown AND/OR
 the nominee holds a pension payable during the pleasure
 of the Crown out of any of the revenues of the
 Commonwealth AND
 the exception to section 44(iv) of the
 Constitution does not apply

Appendix 7 yscript Code Examples 169

RULE Constitution - Section 44(v) PROVIDES
 section 44(v) of the Constitution applies ONLY IF
 the nominee has any direct or indirect pecuniary interest in
 any agreement with the Public Service of the Commonwealth AND
 all such interests are not as a member and in common with the
 other members of an incorporated company consisting of more
 than twenty-five persons

RULE Constitution - Section 44(iv) (exception) PROVIDES
 the exception to section 44(iv) of the Constitution applies ONLY IF
 the nominee holds the office of any of the Queen's
 Ministers of State for the Commonwealth OR
 the nominee holds the office of any of the Queen's
 Ministers for a State OR
 the nominee is a part-time officer or member of the Queen's
 navy or army OR
 the nominee is a part-time officer or member of the naval
 or military forces of the Commonwealth

RULE Acts Interpretation Act 1901 Schedule 1 PROVIDES
 the nominee is an adult ONLY IF
 the definition of "adult" under Schedule 1 of the Acts
 Interpretation Act 1901 Schedule 1 is met

RULE Acts Interpretation Act 1901 Schedule 1 PROVIDES
 the definition of "adult" under Schedule 1 of the Acts
 Interpretation Act 1901 Schedule 1 is met ONLY IF
 the age of the nominee IS GREATEREQUAL THAN 18

EXAMPLE Sykes v Cleary PROVIDES
the nominee holds an office of profit under the Crown ONLY IF
 the nominee was employed as a teacher at the time of nomination AND
 the nominee was appointed or employed by executive government AND
 the nominee was on unpaid leave at the time of nomination AND
 the nominee was not a judicial member of a tribunal

EXAMPLE Nash (No 2) PROVIDES
the nominee holds an office of profit under the Crown ONLY IF
 the nominee was not employed as a teacher at the time of nomination AND
 the nominee was appointed or employed by executive government AND
 the nominee was not on unpaid leave at the time of nomination AND
 the nominee was a judicial member of a tribunal

EXAMPLE Lambie (2018) PROVIDES
the nominee does not hold an office of profit under the Crown ONLY IF
 the nominee was not employed as a teacher at the time of nomination AND
 the nominee was not appointed or employed by executive government AND
 the nominee was not on unpaid leave at the time of nomination AND
 the nominee was not a judicial member of a tribunal

RULE PROVIDES
IF the nominee was employed as a teacher at the time of nomination THEN
 the nominee was appointed or employed by executive government

RULE PROVIDES
IF the nominee was a judicial member of a tribunal THEN
 the nominee was appointed or employed by executive government

Coding with yscript Appendix 7 170

Appendix 7 yscript Code Examples 171

2. Modern Slavery Act 2018 (Cth)

PERSON-THING the entity
DATE the day the Act received Royal Assent
DATE the day the Act was proclaimed

RULE Modern Slavery Act 2018 (Cth) Section 1 PROVIDES
the short title of this Act is the Modern Slavery Act 2018

RULE Modern Slavery Act 2018 (Cth) Section 2 PROVIDES
the date of commencement of section 1 and section 2 IS
 the day the Act received Royal Assent
ASSERT the date of commencement for sections other than section 1
 and section 2 IS the day the Act was proclaimed

RULE Modern Slavery Act 2018 (Cth) Section 3 PROVIDES
this Act requires entities based, or operating, in Australia, with
 an annual consolidated revenue of more than $100 million, to
 report annually on the risks of modern slavery in their operations and
 supply chains, and actions to address those risks AND
other entities based, or operating, in Australia may report voluntarily AND
the Commonwealth is required to report on behalf of non-corporate
 Commonwealth entities AND
the reporting requirements also apply to Commonwealth corporate entities
 and companies with an annual consolidated revenue of more
than $100 million AND
reports are kept by the Minister in a public repository known as the
 Modern Slavery Statements Register AND
statements on the register may be accessed by the public, free of charge,
 on the internet

RULE Modern Slavery Act 2018 (Cth) Section 4 "accounting standards" PROVIDES
"accounting standards" has the same meaning as in the Corporations Act 2001

RULE Modern Slavery Act 2018 (Cth) Section 4 "Australia" PROVIDES
"Australia", when used in a geographical sense, does include the
external Territories

RULE Modern Slavery Act 2018 (Cth) Section 4 "Australian entity" PROVIDES
the entity was an Australian entity during the reporting period ONLY IF
 subsection (a) of the definition of "Australian entity" applies OR
 subsection (b) of the definition of "Australian entity" applies OR
 subsection (c) of the definition of "Australian entity" applies OR
 subsection (d) of the definition of "Australian entity" applies

RULE Modern Slavery Act 2018 (Cth) Section 4 "Australian entity" (a) PROVIDES
subsection (a) of the definition of "Australian entity" applies ONLY IF
 the entity was a company which was a resident within the meaning of
 subsection 6(1) of the Income Tax Assessment Act 1936 during
 the reporting period

RULE Modern Slavery Act 2018 (Cth) Section 4 "Australian entity" (b) PROVIDES
subsection (b) of the definition of "Australian entity" applies ONLY IF
 the entity was a trust where the trust estate was a resident trust
 estate within the meaning of Division 6 of Part III of the
 Income Tax Assessment Act 1936 during the reporting period

RULE Modern Slavery Act 2018 (Cth) Section 4 "Australian entity" (c) PROVIDES
subsection (c) of the definition of "Australian entity" applies ONLY IF
 the entity was a corporate limited partnership which was a resident
 within the meaning of section 94T of the Income Tax
 Assessment Act 1936 during the reporting period

RULE Modern Slavery Act 2018 (Cth) Section 4 "Australian entity" (d) PROVIDES
subsection (d) of the definition of "Australian entity" applies ONLY IF

Coding with yscript Appendix 7 172

 subsection (d)(i) of the definition of "Australian entity" applies OR
 subsection (d)(ii) of the definition of "Australian entity" applies

RULE Modern Slavery Act 2018 (Cth) Section 4 "Australian entity" (d)(i) PROVIDES
subsection (d)(i) of the definition of "Australian entity" applies ONLY IF
 the entity was formed or incorporated in Australia

RULE Modern Slavery Act 2018 (Cth) Section 4 "Australian entity" (d)(ii)
PROVIDES
subsection (d)(ii) of the definition of "Australian entity" applies ONLY IF
 the central management or control of the entity was in Australia

RULE Modern Slavery Act 2018 (Cth) Section 4 "carries on business in Australia"
PROVIDES
the entity carries on business in Australia under the
 section 4 definition ONLY IF section 5(2) is satisfied

RULE Modern Slavery Act 2018 (Cth) Section 4 "consolidated revenue"
PROVIDES
IF the entity does not control another entity or entities within the
meaning of the accounting standards THEN
 the "consolidated revenue" of the entity as defined in section 4 IS
 "the total revenue of the entity for the reporting period"
ELSE
 the "consolidated revenue" of the entity as defined in section 4 IS
 "the total revenue of the entity and all of the controlled entities,
 considered as a group, for the reporting period of the controlling entity"

RULE Modern Slavery Act 2018 (Cth) Section 4 "control" PROVIDES
"control", of an entity by another entity, means control of the
entity within the meaning of the accounting standards

RULE Modern Slavery Act 2018 (Cth) Section 4 "entity" PROVIDES
the entity is an "entity" under section 4 ONLY IF
 the entity satisfies the definition of "entity" contained in section
 960-100 of the Income Tax Assessment Act 1997

RULE Modern Slavery Act 2018 (Cth) Section 4 "modern slavery" PROVIDES
the conduct is modern slavery ONLY IF
 subsection (a) of the section 4 definition of "modern slavery" applies OR
 subsection (b) of the section 4 definition of "modern slavery" applies OR
 subsection (c) of the section 4 definition of "modern slavery" applies OR
 subsection (d) of the section 4 definition of "modern slavery" applies

RULE Modern Slavery Act 2018 (Cth) Section 4 "modern slavery" (a) PROVIDES
subsection (a) of the section 4 definition of "modern slavery" applies ONLY IF
 the conduct would constitute an offence under Division 270 or 271 of the
 Criminal Code

RULE Modern Slavery Act 2018 (Cth) Section 4 "modern slavery" (b) PROVIDES
subsection (b) of the section 4 definition of "modern slavery" applies ONLY IF
 the conduct would constitute an offence under Division 270 or 271
 of the Criminal Code if the conduct took place in Australia

RULE Modern Slavery Act 2018 (Cth) Section 4 "modern slavery" (c) PROVIDES
subsection (c) of the section 4 definition of "modern slavery" applies ONLY IF
 the conduct would constitute trafficking in persons, as defined in
 Article 3 of the Protocol to Prevent, Suppress and Punish Trafficking
 in Persons, Especially Women and Children, supplementing the United
 Nations Convention against Transnational Organized Crime, done at
 New York on 15 November 2000 ([2005] ATS 27)

RULE Modern Slavery Act 2018 (Cth) Section 4 "modern slavery" (d) PROVIDES
subsection (d) of the section 4 definition of "modern slavery" applies ONLY IF
 the conduct would constitute the worst forms of child labour, as
 defined in Article 3 of the ILO Convention (No. 182) concerning the

Appendix 7 yscript Code Examples 173

 Prohibition and Immediate Action for the Elimination of the Worst
 Forms of Child Labour, done at Geneva on 17 June 1999 ([2007] ATS 38)

RULE Modern Slavery Act 2018 (Cth) Section 4 "modern slavery statement"
PROVIDES
the statement is a "modern slavery statement" as defined in section 4 ONLY IF
 the statement is a "modern slavery statement" as defined in section 12

RULE Modern Slavery Act 2018 (Cth) Section 4 "principal governing body"
PROVIDES
IF the entity is a company THEN
 the principal governing body of an entity is the board of directors
ELSE IF the entity is a superannuation fund THEN
 the principal governing body of an entity is the board of trustees
ELSE IF the entity is of a kind prescribed by the rules THEN
 the principal governing body of an entity is the prescribed body
 or member(s)
ELSE
 the principal governing body of an entity is the body, or group of
 members of the entity, with primary responsibility for the governance
 of the entity

RULE Modern Slavery Act 2018 (Cth) Section 4 "register" PROVIDES
"register" means the Modern Slavery Statements Register established
under section 18

RULE Modern Slavery Act 2018 (Cth) Section 4 "reporting entity" PROVIDES
the entity is a "reporting entity" under the section 4 definition ONLY IF
 section 5(1) is satisfied

RULE Modern Slavery Act 2018 (Cth) Section 4 "reporting period" PROVIDES
"reporting period", of an entity, means a financial year, or another annual
accounting period applicable to the entity, which starts after the
commencement of this section

RULE Modern Slavery Act 2018 (Cth) Section 4 "responsible member" PROVIDES
IF subsection (a) of the section 4 definition of "responsible member" applies
THEN
 the responsible member IS "an individual member of the entity's
 principal governing body who is authorised to sign modern slavery
 statements for the purposes of this Act"
ELSE IF subsection (b) of the section 4 definition of "responsible member"
applies THEN
 the responsible member IS "the trustee"
ELSE IF subsection (c) of the section 4 definition of "responsible member"
applies THEN
 the responsible member IS "the individual constituting the corporation"
ELSE IF subsection (d) of the section 4 definition of "responsible member"
applies THEN
 the responsible member IS "the administrator"
ELSE IF subsection (e) of the section 4 definition of "responsible member"
applies THEN
 the responsible member IS "the prescribed member of the entity"

RULE Modern Slavery Act 2018 (Cth) Section 4 "responsible member" (a)
PROVIDES
subsection (a) of the section 4 definition of "responsible member" applies
ONLY IF
 subsection (b) of the section 4 definition of "responsible member" does
 not apply AND
 subsection (c) of the section 4 definition of "responsible member"
 does not apply AND
 subsection (d) of the section 4 definition of "responsible member"
 does not apply AND
 subsection (e) of the section 4 definition of "responsible member"
 does not apply

Coding with yscript Appendix 7 174

RULE Modern Slavery Act 2018 (Cth) Section 4 "responsible member" (b)
PROVIDES
subsection (b) of the section 4 definition of "responsible member" applies
ONLY IF
 the entity is a trust administered by a sole trustee

RULE Modern Slavery Act 2018 (Cth) Section 4 "responsible member" (c)
PROVIDES
subsection (c) of the section 4 definition of "responsible member" applies
ONLY IF
 the entity is a corporation sole

RULE Modern Slavery Act 2018 (Cth) Section 4 "responsible member" (d)
PROVIDES
subsection (d) of the section 4 definition of "responsible member" applies
ONLY IF
 the entity is under administration within the meaning of the
 Corporations Act 2001

RULE Modern Slavery Act 2018 (Cth) Section 4 "responsible member" (e)
PROVIDES
subsection (e) of the section 4 definition of "responsible member" applies
ONLY IF
 the entity is of a kind prescribed by the rules

RULE Modern Slavery Act 2018 (Cth) Section 4 "rules" PROVIDES
"rules" means rules made by the Minister under section 25

RULE Modern Slavery Act 2018 (Cth) Section 5 PROVIDES
the entity is a reporting entity ONLY IF
 section 5(1) applies

RULE Modern Slavery Act 2018 (Cth) Section 5(1) PROVIDES
section 5(1) applies ONLY IF
 section 5(1)(a) applies OR
 section 5(1)(b) applies OR
 section 5(1)(c) applies OR
 section 5(1)(d) applies

RULE Modern Slavery Act 2018 (Cth) Section 5(1)(a) PROVIDES
section 5(1)(a) applies ONLY IF
 the entity had a consolidated revenue of at least $100 million
 for the reporting period AND
 section 5(1)(a)(i) applies AND/OR
 section 5(1)(a)(ii) applies

RULE Modern Slavery Act 2018 (Cth) Section 5(1)(a)(i) PROVIDES
section 5(1)(a)(i) applies ONLY IF
 the entity was an Australian entity during the reporting period

RULE Modern Slavery Act 2018 (Cth) Section 5(1)(a)(ii) PROVIDES
section 5(1)(a)(ii) applies ONLY IF
 the entity carried on business in Australia during the
 reporting period

RULE Modern Slavery Act 2018 (Cth) Section 5(1)(b) PROVIDES
section 5(1)(b) applies ONLY IF
 the reporting entity is the Commonwealth

RULE Modern Slavery Act 2018 (Cth) Section 5(1)(c) PROVIDES
section 5(1)(c) applies ONLY IF
 the entity was a corporate Commonwealth entity within the meaning of
 section 11 of the Public Governance, Performance and
 Accountability Act 2013 during the reporting period OR
 the entity was a Commonwealth company within the meaning of

Appendix 7 yscript Code Examples 175

 section 89 of the Public Governance, Performance and
 Accountability Act 2013 during the reporting period

RULE Modern Slavery Act 2018 (Cth) Section 5(1)(d) PROVIDES
section 5(1)(d) applies ONLY IF
 the entity has volunteered to comply with the requirements
 of the Act under section 6 for the reporting period

RULE Modern Slavery Act 2018 (Cth) Section 5(2) PROVIDES
the entity carried on business in Australia during the reporting period
ONLY IF
 section 5(2)(a) applies OR
 section 5(2)(b) applies

RULE Modern Slavery Act 2018 (Cth) Section 5(2)(a) PROVIDES
section 5(2)(a) applies ONLY IF
 the entity was a body corporate during the reporting period AND
 the entity carried on business in Australia within the meaning of
 section 21 of the Corporations Act 2001

RULE Modern Slavery Act 2018 (Cth) Section 5(2)(b) PROVIDES
section 5(2)(b) applies ONLY IF
 the entity was not a body corporate during the reporting period AND
 the entity carried on business in Australia within the meaning of
 section 21 of the Corporations Act 2001

RULE Modern Slavery Act 2018 (Cth) Section 6 PROVIDES
the entity has volunteered to comply with the requirements
of the Act under section 6 for the reporting period ONLY IF
 the entity has volunteered to comply with the requirements of the Act AND
 the entity has given written notice to the Minister in a manner
 and form approved by the Minister AND
 section 6(3) does not apply AND
 section 6(2) applies

RULE Modern Slavery Act 2018 (Cth) Section 6(2) PROVIDES
section 6(2) applies ONLY IF
 section 6(2)(a) applies OR
 section 6(2)(b) applies

RULE Modern Slavery Act 2018 (Cth) Section 6(2)(a) PROVIDES
section 6(2)(a) applies ONLY IF
 the entity was an Australian entity during the reporting period

RULE Modern Slavery Act 2018 (Cth) Section 6(2)(b) PROVIDES
section 6(2)(b) applies ONLY IF
 the entity carried on business in Australia during
 reporting period

RULE Modern Slavery Act 2018 (Cth) Section 6(3) PROVIDES
section 6(3) applies ONLY IF
 the entity has revoked the notice made under section 6(1) by giving
 written notice to the Minister before the start of the reporting period

RULE Modern Slavery Act 2018 (Cth) Section 7 PROVIDES
the Act has a jurisdictional basis ONLY IF
 section 7(1)(a) applies OR
 section 7(1)(b) applies

RULE Modern Slavery Act 2018 (Cth) Section 7(1)(a) PROVIDES
section 7(1)(a) applies ONLY IF
 the Act relates to trade and commerce under paragraph 51(i) of the
 Constitution OR
 the Act relates to census and statistics under paragraph 51(xi) of the
 Constitution OR
 the Act relates to aliens under paragraph 51(xix) of the Constitution OR

Coding with yscript Appendix 7 176

 the Act relates to corporations under paragraph 51(xx) of
 the Constitution OR
 the Act relates to marriage under paragraph 51(xxi) of the Constitution OR
 the Act relates to immigration under paragraph 51(xxvii) of the
 Constitution OR
 the Act relates to external affairs under paragraph 51(xxix) of the
 Constitution OR
 the Act relates to incidental matters under paragraph 51(xxxix) of the
 Constitution OR
 the Act is covered the executive powers provisions contained in section 61
 of the Constitution

RULE Modern Slavery Act 2018 (Cth) Section 7(1)(b) PROVIDES
section 7(1)(b) applies ONLY IF
 the Act is made under the implied legislative powers of the Commonwealth

RULE Modern Slavery Act 2018 (Cth) Section 7(2) PROVIDES
IF the Act gives effect to the International Convention to Suppress the
 Slave Trade and Slavery, done at Geneva on 25 September 1926
 ([1927] ATS 11) OR
 the Act gives effect to the ILO Convention (No. 29) concerning Forced
 or Compulsory Labour, done at Geneva on 28 June 1930 ([1933] ATS 21) OR
 the Act gives effect to the Supplementary Convention on the Abolition
 of Slavery, the Slave Trade, and Institutions and Practices similar to
 Slavery, done at Geneva on 7 September 1956 ([1958] ATS 3) OR
 the Act gives effect to the International Covenant on Civil and
 Political Rights, done at New York on 16 December 1966 ([1980] ATS 23) OR
 the Act gives effect to the Convention on the Elimination of All Forms
 of Discrimination Against Women, done at New York on 18 December 1979
 ([1983] ATS 9) OR
 the Act gives effect to the Convention on the Rights of the Child, done
 at New York on 20 November 1989 ([1991] ATS 4) OR
 the Act gives effect to the Protocol to Prevent, Suppress and Punish
 Trafficking in Persons, Especially Women and Children, supplementing the
 United Nations Convention against Transnational Organized Crime, done at
 New York on 15 November 2000 ([2005] ATS 27) OR
 the Act gives effect to the Optional Protocol to the Convention on the
 Rights of the Child on the Sale of Children, Child Prostitution and
 Child Pornography, done at New York on 25 May 2000 ([2007] ATS 6) OR
 the Act gives effect to the ILO Convention (No. 182) concerning the
 Prohibition and Immediate Action for the Elimination of the Worst Forms
 of Child Labour, done at Geneva on 17 June 1999 ([2007] ATS 38)
THEN
 the Act relates to external affairs under paragraph 51(xxix) of
 the Constitution

RULE Modern Slavery Act 2018 (Cth) Section 8 PROVIDES
this Act binds the Crown in right of the Commonwealth AND
this Act does not bind the Crown in right of a State, the Australian Capital
Territory or the Northern Territory

RULE Modern Slavery Act 2018 (Cth) Section 9 PROVIDES
this Act extends to every external Territory

RULE Modern Slavery Act 2018 (Cth) Section 10 PROVIDES
this Act extends to acts, omissions, matters and things outside Australia

RULE Modern Slavery Act 2018 (Cth) Section 11 PROVIDES
slavery statements must be given annually to the Minister, describing
 the risks of modern slavery in the operations and supply chains of
 reporting entities and entities owned or controlled by those entities AND
the statements must also include information about actions taken to
address those risks AND
joint modern slavery statements may be given on behalf of one or more
 reporting entities AND
the Minister must prepare an annual modern slavery statement on behalf

Appendix 7 yscript Code Examples 177

 of all non-corporate Commonwealth entities AND
the Minister may request an explanation from an entity about the
 entity's failure to comply with a requirement in relation to modern
 slavery statements, and may also request that the reporting
 entity undertake remedial action in relation to that requirement AND
the Minister may publish information about the failure to comply on the
 register or elsewhere, including the identity of an entity if an entity
 fails to comply with the request

RULE Modern Slavery Act 2018 (Cth) Section 12 PROVIDES
the requirement to report under section 12 has been met ONLY IF
 the entity has submitted a modern slavery statement under section 13 OR
 a joint modern slavery statement has been submitted that covers the entity
 under section 14 OR
 the entity is covered by a Commonwealth modern slavery statement
 under section 15

RULE Modern Slavery Act 2018 (Cth) Section 13 PROVIDES
the entity has submitted a modern slavery statement under section 13 ONLY IF
 the conditions set out in section 13(1) are met AND
 the conditions set out in section 13(2) are met

RULE Modern Slavery Act 2018 (Cth) Section 13(1) PROVIDES
the conditions set out in section 13(1) are met ONLY IF
 the entity is a reporting entity AND
 a joint modern slavery statement has not been submitted that covers
 the entity under section 14 AND
 the entity has lodged a modern slavery statement as a single
 reporting entity AND
 the conditions set out in section 13(2) are met

RULE Modern Slavery Act 2018 (Cth) Section 13(2) PROVIDES
the conditions set out in section 13(2) are met ONLY IF
 section 13(2)(a) is satisfied AND
 section 13(2)(b) is satisfied AND
 section 13(2)(c) is satisfied AND
 section 13(2)(d) is satisfied AND
 section 13(2)(e) is satisfied

RULE Modern Slavery Act 2018 (Cth) Section 13(2)(a) PROVIDES
section 13(2)(a) is satisfied ONLY IF
 the modern slavery statement complies with section 16

RULE Modern Slavery Act 2018 (Cth) Section 13(2)(b) PROVIDES
section 13(2)(b) is satisfied ONLY IF
 the statement has been prepared in a form approved by the Minister

RULE Modern Slavery Act 2018 (Cth) Section 13(2)(c) PROVIDES
section 13(2)(c) is satisfied ONLY IF
 the statement has been approved by the principal governing
 body of the entity

RULE Modern Slavery Act 2018 (Cth) Section 13(2)(d) PROVIDES
section 13(2)(d) is satisfied ONLY IF
 the statement has been signed by a responsible member of the entity

RULE Modern Slavery Act 2018 (Cth) Section 13(2)(e) PROVIDES
section 13(2)(e) is satisfied ONLY IF
 the statement was given to the Minister in a manner approved by
 the Minister AND
 the statement was given to the Minister
 within the required time after the end
 of the reporting period for the entity

RULE Modern Slavery Act 2018 (Cth) Section 14 PROVIDES
a joint modern slavery statement has been submitted that covers the

Coding with yscript Appendix 7 178

entity under section 14 ONLY IF
 section 14(1) applies AND
 section 14(2) applies

RULE Modern Slavery Act 2018 (Cth) Section 14(1) PROVIDES
section 14(1) applies ONLY IF
 the reporting entity is not the Commonwealth AND
 the entity is covered by a joint modern slavery statement

RULE Modern Slavery Act 2018 (Cth) Section 14(2) PROVIDES
section 14(2) applies ONLY IF
 section 14(2)(a) is satisfied AND
 section 14(2)(b) is satisfied AND
 section 14(2)(c) is satisfied AND
 section 14(2)(d) is satisfied AND
 section 14(2)(e) is satisfied AND
 section 14(2)(f) is satisfied

RULE Modern Slavery Act 2018 (Cth) Section 14(2)(a) PROVIDES
section 14(2)(a) is satisfied ONLY IF
 the modern slavery statement complies with section 16

RULE Modern Slavery Act 2018 (Cth) Section 14(2)(b) PROVIDES
section 14(2)(b) is satisfied ONLY IF
 the joint statement has been prepared in a form approved by the Minister

RULE Modern Slavery Act 2018 (Cth) Section 14(2)(c) PROVIDES
section 14(2)(c) is satisfied ONLY IF
 the joint statement has been prepared in consultation with each
 reporting entity covered by the statement

RULE Modern Slavery Act 2018 (Cth) Section 14(2)(d) PROVIDES
section 14(2)(d) is satisfied ONLY IF
 section 14(2)(d)(i) is satisfied OR
 section 14(2)(d)(ii) is satisfied OR
 section 14(2)(d)(iii) is satisfied

RULE Modern Slavery Act 2018 (Cth) Section 14(2)(d)(i) PROVIDES
section 14(2)(d)(i) is satisfied ONLY IF
 the joint statement has been approved by the principal governing body of
 each reporting entity covered by the statement

RULE Modern Slavery Act 2018 (Cth) Section 14(2)(d)(ii) PROVIDES
section 14(2)(d)(ii) is satisfied ONLY IF
 the joint statement has been approved by the principal governing body of
 an entity which is in a position, directly or indirectly, to influence or
 control each reporting entity covered by the statement

RULE Modern Slavery Act 2018 (Cth) Section 14(2)(d)(iii) PROVIDES
section 14(2)(d)(iii) is satisfied ONLY IF
 it is not practicable to have all entities covered by the statement to
 approve it AND
 it is not practicable to have a higher entity approve the statement on
 behalf of all entities covered by the joint statement AND
 at least one reporting entity covered by the statement has approved it

RULE Modern Slavery Act 2018 (Cth) Section 14(2)(e) PROVIDES
section 14(2)(e) is satisfied ONLY IF
 section 14(2)(e)(i) is satisfied OR
 section 14(2)(e)(ii) is satisfied OR
 section 14(2)(e)(iii) is satisfied

Appendix 7 yscript Code Examples 179

RULE Modern Slavery Act 2018 (Cth) Section 14(2)(e)(i) PROVIDES
section 14(2)(e)(i) is satisfied ONLY IF
 section 14(2)(d)(i) is satisfied AND
 the joint statement is signed by a responsible member of each reporting
 entity

RULE Modern Slavery Act 2018 (Cth) Section 14(2)(e)(ii) PROVIDES
section 14(2)(e)(ii) is satisfied ONLY IF
 section 14(2)(d)(ii) is satisfied AND
 the joint statement is signed by a responsible member of the higher entity

RULE Modern Slavery Act 2018 (Cth) Section 14(2)(e)(iii) PROVIDES
section 14(2)(e)(iii) is satisfied ONLY IF
 section 14(2)(d)(iii) is satisfied AND
 the joint statement is signed by a responsible member of the relevant
 entities

RULE Modern Slavery Act 2018 (Cth) Section 14(2)(f) PROVIDES
section 14(2)(f) is satisfied ONLY IF
 section 14(2)(f)(i) is satisfied OR
 section 14(2)(f)(ii) is satisfied

RULE Modern Slavery Act 2018 (Cth) Section 14(2)(f)(i) PROVIDES
section 14(2)(f)(i) is satisfied ONLY IF
 the statement was given to the Minister within the required time after the
end
 of the reporting period for the entity AND
 the statement was given to the Minister in a manner approved by
 the Minister

RULE Modern Slavery Act 2018 (Cth) Section 14(2)(f)(ii) PROVIDES
section 14(2)(f)(ii) is satisfied ONLY IF
 the statement was given to the Minister within a period prescribed by
 the rules

RULE Modern Slavery Act 2018 (Cth) Section 15 PROVIDES
the entity is covered by a Commonwealth modern slavery statement
under section 15 ONLY IF
 the entity is a Commonwealth Department, agency or other Commonwealth owned
 or controlled corporate or non-corporate entity AND
 section 15(1) applies AND
 section 15(2) applies

RULE Modern Slavery Act 2018 (Cth) Section 15(1) PROVIDES
section 15(1) applies ONLY IF
 the entity was not a non-corporate Commonwealth entity within the meaning
 of the Public Governance, Performance and Accountability Act 2013 AND
 the entity is included in a modern slavery statement prepared by the
 Commonwealth

RULE Modern Slavery Act 2018 (Cth) Section 15(2) PROVIDES
section 15(2) applies ONLY IF
 section 15(2)(a) applies AND
 section 15(2)(b) applies

RULE Modern Slavery Act 2018 (Cth) Section 15(2)(a) PROVIDES
section 15(2)(a) applies ONLY IF
 the modern slavery statement complies with section 16

RULE Modern Slavery Act 2018 (Cth) Section 15(2)(b) PROVIDES
section 15(2)(b) applies ONLY IF
 the Commonwealth modern slavery statement was prepared
 within the required time after the end of the reporting period

RULE Modern Slavery Act 2018 (Cth) Section 16 PROVIDES
the modern slavery statement complies with section 16 ONLY IF

Coding with yscript Appendix 7 180

 section 16(1) applies AND
 section 16(2) applies

RULE Modern Slavery Act 2018 (Cth) Section 16(1) PROVIDES
section 16(1) applies ONLY IF
 section 16(1)(a) is satisfied AND
 section 16(1)(b) is satisfied AND
 section 16(1)(c) is satisfied AND
 section 16(1)(d) is satisfied AND
 section 16(1)(e) is satisfied AND
 section 16(1)(f) is satisfied AND
 section 16(1)(g) is satisfied

RULE Modern Slavery Act 2018 (Cth) Section 16(1)(a) PROVIDES
section 16(1)(a) is satisfied ONLY IF
 the modern slavery statement identifies the entity

RULE Modern Slavery Act 2018 (Cth) Section 16(1)(b) PROVIDES
section 16(1)(b) is satisfied ONLY IF
 the statement describes the structure, operations and supply chains
 of the entity

RULE Modern Slavery Act 2018 (Cth) Section 16(1)(c) PROVIDES
section 16(1)(c) is satisfied ONLY IF
 the statement describes the risks of modern slavery practices in the
 operations and supply chains of the entity, and any entities that
 the entity owns or controls

RULE Modern Slavery Act 2018 (Cth) Section 16(1)(d) PROVIDES
section 16(1)(d) is satisfied ONLY IF
 the statement describes the actions taken by the entity and
 any entity that the entity owns or controls, to assess and address
 those risks, including due diligence and remediation processes

RULE Modern Slavery Act 2018 (Cth) Section 16(1)(e) PROVIDES
section 16(1)(e) is satisfied ONLY IF
 the statement describes how the entity assesses the
 effectiveness of such actions

RULE Modern Slavery Act 2018 (Cth) Section 16(1)(f) PROVIDES
section 16(1)(f) is satisfied ONLY IF
 section 16(1)(f)(i) is satisfied AND
 section 16(1)(f)(ii) is satisfied

RULE Modern Slavery Act 2018 (Cth) Section 16(1)(f)(i) PROVIDES
section 16(1)(f)(i) is satisfied ONLY IF
 the statement describes the process of consultation with any entities
 that the entity owns or controls

RULE Modern Slavery Act 2018 (Cth) Section 16(1)(f)(ii) PROVIDES
section 16(1)(f)(ii) is satisfied ONLY IF
 a joint modern slavery statement has not been submitted that covers the
 entity under section 14 OR
 the statement describes the process of consultation with
 the reporting entity giving the statement

RULE Modern Slavery Act 2018 (Cth) Section 16(1)(g) PROVIDES
section 16(1)(g) is satisfied ONLY IF
 the statement includes all other information considered to be relevant

RULE Modern Slavery Act 2018 (Cth) Section 16(2) PROVIDES
section 16(2) applies ONLY IF
 the entity is covered by a Commonwealth modern slavery statement
 under section 15 OR
 section 16(2)(a) applies OR
 section 16(2)(b) applies

Appendix 7 yscript Code Examples 181

RULE Modern Slavery Act 2018 (Cth) Section 16(2)(a) PROVIDES
section 16(2)(a) applies ONLY IF
 the entity has not submitted a modern slavery statement under section 13 OR
 the statement includes details of approval by the principal governing
 body of the entity

RULE Modern Slavery Act 2018 (Cth) Section 16(2)(b) PROVIDES
section 16(2)(b) applies ONLY IF
 a joint modern slavery statement has not been submitted that covers the
 entity under section 14 OR
 section 16(2)(b)(i) applies AND
 section 16(2)(b)(ii) applies

RULE Modern Slavery Act 2018 (Cth) Section 16(2)(b)(i) PROVIDES
section 16(2)(b)(i) applies ONLY IF
 the joint modern statement includes details of approval by the
 relevant principal governing body or bodies

RULE Modern Slavery Act 2018 (Cth) Section 16(2)(b)(ii) PROVIDES
section 16(2)(b)(ii) applies ONLY IF
 section 14(2)(d)(iii) does not apply OR
 the statement does include an explanation of why it is not
 practicable to comply with subsections 14(2)(d)(i) or (ii)

RULE Modern Slavery Act 2018 (Cth) Section 16A PROVIDES
IF the entity has not submitted a modern slavery statement under
section 13 AND
a joint modern slavery statement has not been submitted that covers the
entity under section 14 THEN BEGIN
 the Minister may give a written request to the entity under section
 16A(1)(a) to provide an explanation for the failure to comply within
 a specified period of 28 days or longer after the request is given AND
 the Minister may give a written request to the entity under
 section 16A(1)(b) to undertake specified remedial action in accordance
 with the request within a specified period of 28 days or longer after
 the request is given AND
 pursuant to section 16A(2), the Minister may extend, or further extend,
 a period specified in a request under section 16A(1) by written notice
 given to the entity before or after the end of the specified
 period AND
 as required by section 16A(3), the request must include a statement
 of the effect of subsections (2) and (4) to (6)
END ELSE
 a request from the Minister to the entity in relation to compliance is
 not necessary

RULE Modern Slavery Act 2018 (Cth) Section 16A(4) PROVIDES
IF the entity has failed to comply with a request under section 16A(1) THEN
the Minister may publish the identity of the entity AND
the Minister may publish the identities of all entities included by a
joint modern slavery statement AND
the Minister may publish the date that a request under section 16A(1) was
made and details of any extensions under section 16A(2) AND
the Minister may publish details of the explanation or remedial action
requested, and the period or periods specified in the request AND
the Minister may publish the reasons why the Minister is satisfied that the
entity has failed to comply with the request

RULE Modern Slavery Act 2018 (Cth) Section 16A(5) PROVIDES
the entity has failed to comply with a request under section 16A(1) ONLY IF
 no explanation has been given in response to the request within the
 period specified OR
 no remedial action is undertaken in response to the request within
 the period specified

Coding with yscript Appendix 7 182

RULE Modern Slavery Act 2018 (Cth) Section 17 PROVIDES
this Part establishes the Modern Slavery Statements Register AND
the register is made available to the public on the internet AND
modern slavery statements are registered by the Minister AND
revised versions of registered modern slavery statements can be
registered in some circumstances

RULE Modern Slavery Act 2018 (Cth) Section 18 PROVIDES
the Minister must maintain a register of modern slavery statements, to be
known as the Modern Slavery Statements Register AND
the register must be made available for public inspection, without
charge, on the internet

RULE Modern Slavery Act 2018 (Cth) Section 19 PROVIDES
a modern slavery statement can be registered ONLY IF
 the Minister must register the modern slavery statement under
 section 19(1) OR
 the Minister may register the modern slavery statement under
 section 19(2)

RULE Modern Slavery Act 2018 (Cth) Section 19(1) PROVIDES
the Minister must register the modern slavery statement under
section 19(1) ONLY IF
 the entity has submitted a modern slavery statement under section 13 OR
 a joint modern slavery statement has been submitted that covers the
 entity under section 14 OR
 the entity is covered by a Commonwealth modern slavery statement
 under section 15

RULE Modern Slavery Act 2018 (Cth) Section 19(2) PROVIDES
the Minister may register the modern slavery statement under
section 19(2) ONLY IF
 the statement was given for the purposes of compliance with section
 13 or 14 (including a statement given in response to a request under
 section 16A) even if the entity giving the statement does not comply
 with the requirements of subsection 13(2) or 14(2)

RULE Modern Slavery Act 2018 (Cth) Section 20 PROVIDES
section 20 needs work

RULE Modern Slavery Act 2018 (Cth) Section 21 PROVIDES
this Part deals with things done by an unincorporated entity AND
this Part deals with the Minister's capacity to delegate powers and
functions under this Act AND
this Part deals with annual reports about the implementation of this Act
this Part deals with the 3-year review of this Act AND
this Part deals with the power to make rules

RULE Modern Slavery Act 2018 (Cth) Section 22 PROVIDES
IF this Act requires or allows a thing to be done by an entity that is an
unincorporated body THEN
 the thing must, or may, be done by a responsible member of the entity
 on the entity's behalf

RULE Modern Slavery Act 2018 (Cth) Section 23 PROVIDES
the Minister may, by writing, delegate all or any of the Minister's powers
and functions under this Act to an SES employee, or acting SES employee,
in the Department ONLY IF the power does not make, vary or revoke the rules
ASSERT the delegate must comply with any directions of the Minister in
exercising powers or functions under a delegation

RULE Modern Slavery Act 2018 (Cth) Section 24 PROVIDES
section 24 needs work

RULE Modern Slavery Act 2018 (Cth) Section 25 PROVIDES

Appendix 7 yscript Code Examples 183

section 25 needs work

/*
 * other Acts, mechanics and common-sense
 */

RULE Income Tax Assessment Act 1936 Section 6 "resident" (1)(b) PROVIDES
the entity was a company which was a resident within the meaning of
subsection 6(1) of the Income Tax Assessment Act 1936 during
the reporting period ONLY IF
 the entity was a company during the reporting period AND BEGIN
 the entity was formed or incorporated in Australia OR
 the entity was not formed or incorporated in Australia AND
 the entity carried on business in Australia during the
 reporting period AND
 the central management or control of the entity was
 in Australia AND/OR
 the entity's voting power was controlled by shareholders who
 were residents of Australia
 END

RULE Corporations Act 2001 Section 21 PROVIDES
the entity carried on business in Australia within the meaning of
section 21 of the Corporations Act 2001 ONLY IF
 section 21(1) of the Corporations Act 2001 applies OR
 section 21(2) of the Corporations Act 2001 applies AND
 the business activities in Australia are not restricted to only
 those listed in section 21(3) of the Corporations Act
 2001

RULE Corporations Act 2001 Section 21(1) PROVIDES
section 21(1) of the Corporations Act 2001 applies ONLY IF
 the entity has a place of business in Australia, or in State or
 Territory

RULE Corporations Act 2001 Section 21(2) PROVIDES
section 21(2) of the Corporations Act 2001 applies ONLY IF
 section 21(2)(a) of the Corporations Act 2001 applies OR
 section 21(2)(b) of the Corporations Act 2001 applies

RULE Corporations Act 2001 Section 21(2)(a) PROVIDES
section 21(2)(a) of the Corporations Act 2001 applies ONLY IF
 the entity has established or used a share transfer office or a
 share registration office in Australia, or in a State or Territory

RULE Corporations Act 2001 Section 21(2)(b) PROVIDES
section 21(2)(b) of the Corporations Act 2001 applies ONLY IF
 the entity has administered, managed or otherwise dealt with property
 situated in Australia as an agent, legal representative or trustee,
 whether by employees or agents or otherwise

RULE Corporations Act 2001 Section 21(3) PROVIDES
 the business activities in Australia are restricted to only
 those listed in section 21(3) of the Corporations Act 2001 ONLY IF
 the business activities in Australia involve being a party to
 proceedings or effecting settlement of a proceeding,
 claim or dispute AND/OR
 the business activities in Australia involve holding meetings of
 directors or shareholders or conducting other activities relating to
 the entity's internal affairs AND/OR
 the business activities in Australia involve maintaining a bank
 account AND/OR
 the business activities in Australia involve effecting a sale through
 an independent contractor AND/OR
 the business activities in Australia involve soliciting or procuring an
 order that becomes a binding contract only if the order is accepted

Coding with yscript Appendix 7 184

 outside of Australia AND/OR
 the business activities in Australia involves the creation of evidence
 of a debt or creates a charge on property AND/OR
 the business activities in Australia involves securing or collecting
 debts or enforcing rights in regard to securities relating to such
 debts AND/OR
 the business activities in Australia involves conducting an isolated
 transaction that is completed with 31 days, not being one of a number
 of similar transactions repeated from time to time AND/OR
 the business activities in Australia involve investing funds or holding
 any property AND
 the entity does not have any other business activities in Australia
 other than those mentioned in section 21(3) of the Corporations Act
 2001

DATE the first day of the reporting period
DATE the last day of the relevant financial year for the entity
DATE the date of commencement for sections other than section 1 and section 2

RULE Modern Slavery Act 2018 (Cth) Royal Assent PROVIDES
the day the Act received Royal Assent IS 10 December 2018

RULE Modern Slavery Commencement Proclamation 2018 F2018N00189 PROVIDES
the day the Act was proclaimed IS 1 January 2019

RULE Reporting Period PROVIDES
the reporting period is covered by the Act ONLY IF
 the first day of the reporting period is after the commencement of the Act

RULE Reporting Period After Commencement of the Act PROVIDES
the first day of the reporting period is after the commencement of the Act
ONLY IF
 the first day of the reporting period GREATER THAN
 the date of commencement for sections other than section 1 and
 section 2

RULE First Day of the Reporting Period PROVIDES
the first day of the reporting period IS
 the last day of the relevant financial year for the entity
 MINUS 1 YEAR PLUS 1 DAY

RULE Last Day to Submit PROVIDES
IF the reporting period is covered by the Act THEN
IF the Australian Government has extended the deadline for submission of
modern slavery statements by 3 months due to the COVID-19 pandemic THEN
 the last day to provide the modern slavery statement for the entity IS
 the last day of the relevant financial year for the entity PLUS 9 MONTHS
ELSE
 the last day to provide the modern slavery statement for the entity IS
 the last day of the relevant financial year for the entity PLUS 3 MONTHS

RULE COVID-19 Extension PROVIDES
the Australian Government has extended the deadline for submission of
modern slavery statements by 3 months due to the COVID-19 pandemic

RULE Commonwealth Statement Within Required Time PROVIDES
the Commonwealth modern slavery statement was prepared
within the required time after the end of the reporting period ONLY IF
 the date the Commonwealth modern slavery statement was
 prepared IS LESSEQUAL THAN the last day to provide the modern
 slavery statement for the entity

RULE Statement Within Required Time PROVIDES
the statement was given to the Minister within the required time after the
end of the reporting period for the entity ONLY IF
 the date the modern slavery statement was given to the Minister

Appendix 7 yscript Code Examples 185

 IS LESSEQUAL THAN the last day to provide the modern slavery statement
 for the entity

RULE Time to Submit Has Not Lapsed PROVIDES
the entity still has time to submit a modern slavery statement that
meets the requirements of the Act ONLY IF
 the last day to provide the modern slavery statement for the entity
 IS GREATEREQUAL today

GOAL RULE Modern Slavery Act 2018 (Cth) PROVIDES
the entity has complied with the Act ONLY IF
 the entity is not a reporting entity OR
 the entity is a reporting entity AND
 the reporting period is not covered by the Act OR
 the entity is a reporting entity AND
 the reporting period is covered by the Act AND
 the requirement to report under section 12 has been met OR
 the entity is a reporting entity AND
 the reporting period is covered by the Act AND
 the requirement to report under section 12 has not been met AND
 the entity still has time to submit a modern slavery
 statement that meets the requirements of the Act

RULE Entity is Commonwealth of Australia PROVIDES
the reporting entity is the Commonwealth ONLY IF
 the name of the entity EQUALS "the Commonwealth" OR
 the name of the entity EQUALS "Commonwealth" OR
 the name of the entity EQUALS "the Commonwealth of Australia" OR
 the entity is a Commonwealth Department, agency or other Commonwealth
 owned or controlled corporate or non-corporate entity

RULE Companies Are Bodies Corporate PROVIDES
IF the entity was a company during the reporting period THEN
 the entity was a body corporate during the reporting period

RULE Individuals and Companies are not trusts PROVIDES
IF the entity was a company during the reporting period OR
the entity is a person THEN
 the entity was not a trust where the trust estate was a resident
 trust estate within the meaning of Division 6 of Part III of the
 Income Tax Assessment Act 1936 during the reporting period

RULE Individuals and Companies are not corporate limited partnerships PROVIDES
IF the entity was a company during the reporting period OR
the entity is a person THEN
 the entity was not a corporate limited partnership which was a
 resident within the meaning of section 94T of the Income Tax
 Assessment Act 1936 during the reporting period

RULE Individuals and Companies are not Partnerships PROVIDES
IF the entity was a company during the reporting period OR
the entity is a person THEN
 the entity was not a partnership during the reporting period

RULE Individuals and Companies not non-Corporate Commonwealth Entities PROVIDES
IF the entity was a company during the reporting period OR
the entity is a person THEN
 the entity was not a non-corporate Commonwealth entity within the meaning
 of the Public Governance, Performance and Accountability Act 2013

RULE Individuals and Private Companies are not Commonwealth Entities PROVIDES
IF the entity was a company during the reporting period OR
the entity is a person THEN
 the entity is not a Commonwealth Department, agency or other Commonwealth
 owned or controlled corporate or non-corporate entity

Coding with yscript Appendix 7 186

RULE Individuals are not Companies PROVIDES
IF the entity is a person THEN
 the entity was not a company during the reporting period

RULE Individuals are not Bodies Corporate PROVIDES
IF the entity is a person THEN
 the entity was not a body corporate during the reporting period

RULE Individuals are not Formed or Incorporated PROVIDES
IF the entity is a person THEN
 the entity was not formed or incorporated in Australia

RULE Individual does not have Central Management or Control PROVIDES
IF the entity is a person THEN
 the central management or control of the entity was not in Australia

RULE Individual is not a Corporate Commonwealth Entity PROVIDES
IF the entity is a person THEN
 the entity was not a corporate Commonwealth entity within the meaning of
 section 11 of the Public Governance, Performance and Accountability
 Act 2013 during the reporting period

RULE Individual is not a Commonwealth Company PROVIDES
IF the entity is a person THEN
 the entity was not a Commonwealth company within the meaning of section
 89 of the Public Governance, Performance and Accountability Act 2013
 during the reporting period

BOOLEAN the entity is a person
PROMPT is the entity an individual
TRANSLATE true AS the entity is an individual
TRANSLATE false AS the entity is not an individual

Appendix 7 yscript Code Examples 187

3. Community Gaming Regulations 2020 (NSW)

PERSON the person conducting the gaming activity
THING the benefiting organisation
THING the gaming activity
THING the organiser
THING the registered club
THING the fund-raising organisation

MONEY the amount of the gross proceeds of the gaming activity
MONEY the amount returned to participants
MONEY the total value of all of the prizes
MONEY the total cost of prizes and expenses
MONEY the amount paid to the benefiting organisation
MONEY the maximum amount of money payable as a separate prize

RULE Community Gaming Regulation 2020 Regulation 1 PROVIDES
this Regulation is the Community Gaming Regulation 2020

RULE Community Gaming Regulation 2020 Regulation 2 PROVIDES
this Regulation commences on 1 July 2020 AND
this Regulation is required to be published on the NSW legislation website

RULE Community Gaming Regulation 2020 Regulation 2 Commencement PROVIDES
the gaming activity is covered by the Regulations ONLY IF
 the date of the gaming activity is after the commencement of the
 Regulations on 1 July 2020

RULE Community Gaming Regulation 2020 Regulation 2 Commencement Calculation
PROVIDES
the date of the gaming activity is after the commencement of the Regulations
on 1 July 2020 ONLY IF
 the date of the gaming activity GREATEREQUAL THAN 1 July 2020

RULE Community Gaming Regulation 2020 Regulation 3 "art union" PROVIDES
the gaming activity is run by an "art union" under the regulation 3
definition ONLY IF
 the organiser is a voluntary association formed to purchase prizes to
 be awarded by lot among members of the association AND
 clause (a) of the definition of "art union" applies AND/OR
 clause (b) of the definition of "art union" applies AND/OR
 clause (c) of the definition of "art union" applies

RULE Community Gaming Regulation 2020 Regulation 3 "art union" (a) PROVIDES
clause (a) of the definition of "art union" applies ONLY IF
 the purpose of raising funds is to support a charitable organisation
 under the regulation 3 definition

RULE Community Gaming Regulation 2020 Regulation 3 "art union" (b) PROVIDES
clause (b) of the definition of "art union" applies ONLY IF
 the purpose of raising funds is to support a non-profit organisation
 under the regulation 3 definition

RULE Community Gaming Regulation 2020 Regulation 3 "art union" (c) PROVIDES
clause (c) of the definition of "art union" applies ONLY IF
 the purpose of raising funds is to support an object of genuinely public
 or charitable character

RULE Community Gaming Regulation 2020 Regulation 3 "art union gaming
activity" PROVIDES
 "art union gaming activity" has the meaning given by regulation 4

RULE Community Gaming Regulation 2020 Regulation 3 "benefiting organisation"
PROVIDES
"benefiting organisation" is defined as the person or body for whose benefit a

Coding with yscript Appendix 7 188

gaming activity is conducted

RULE Community Gaming Regulation 2020 Regulation 3 "bingo"
PROVIDES
"bingo" is defined in regulation 5(1)

RULE Community Gaming Regulation 2020 Regulation 3 "calcutta" PROVIDES
the gaming activity is a "calcutta" under the regulation 3 definition
ONLY IF
 clause (a) of the definition of "calcutta" in regulation 4 applies AND
 clause (b) of the definition of "calcutta" in regulation 4 applies AND
 clause (c) of the definition of "calcutta" in regulation 4 applies

RULE Community Gaming Regulation 2020 Regulation 3 "calcutta" (a) PROVIDES
clause (a) of the definition of "calcutta" in regulation 4 applies ONLY IF
 the gaming activity is a game in which each participant pays a fee for
 a chance to win by lot a right in respect of a competitor in a sporting
 or racing event

RULE Community Gaming Regulation 2020 Regulation 3 "calcutta" (b) PROVIDES
clause (b) of the definition of "calcutta" in regulation 4 applies ONLY IF
 the rights in respect of a competitor in a sporting or racing event are
 auctioned

RULE Community Gaming Regulation 2020 Regulation 3 "calcutta" (c) PROVIDES
clause (c) of the definition of "calcutta" in regulation 4 applies ONLY IF
 clause (c)(i) of the definition of "calcutta" in regulation 4 applies AND
 clause (c)(ii) of the definition of "calcutta" in regulation 4 applies

RULE Community Gaming Regulation 2020 Regulation 3 "calcutta" (c)(i)
PROVIDES
clause (c)(i) of the definition of "calcutta" in regulation 4 applies ONLY IF
 the holder of each right is entitled to elect to sell the right at the
 auction and receive half of the proceeds of sale

RULE Community Gaming Regulation 2020 Regulation 3 "calcutta" (c)(ii)
PROVIDES
clause (c)(ii) of the definition of "calcutta" in regulation 4 applies
ONLY IF
 the holder of each right is entitled to elect to retain the right by
 making (and paying half of) the highest bid

RULE Community Gaming Regulation 2020 Regulation 3 "charitable
organisation" (1) PROVIDES
the purpose of raising funds is to support a charitable organisation under
the regulation 3 definition ONLY IF
 the purpose of raising funds is to support an incorporated or
 unincorporated charitable body formed for, or to benefit, a benevolent,
 philanthropic or patriotic purpose

RULE Community Gaming Regulation 2020 Regulation 3 "charitable
organisation" (2) PROVIDES
the fund-raising organisation is a "charitable organisation" under the
regulation 3 definition ONLY IF
 the organisation is an incorporated or unincorporated charitable body
 formed for, or to benefit, a benevolent, philanthropic, or patriotic
 purpose

RULE Community Gaming Regulation 2020 Regulation 3 "charitable
organisation" (3) PROVIDES
the gaming activity is conducted by or on behalf of a charitable
organisation under the regulation 3 definition ONLY IF
 the gaming activity is conducted by or on behalf of an incorporated or
 unincorporated charitable body formed for, or to benefit, a benevolent,
 philanthropic or patriotic purpose

Appendix 7 yscript Code Examples 189

RULE Community Gaming Regulation 2020 Regulation 3 "charity housie" PROVIDES
"charity housie" means a gaming activity permitted under regulation 5(2)

RULE Community Gaming Regulation 2020 Regulation 3 "club bingo" PROVIDES
"club bingo" means a gaming activity permitted under regulation 5(4)

RULE Community Gaming Regulation 2020 Regulation 3 "chocolate wheel" PROVIDES
the gaming activity is a "chocolate wheel" under the regulation 3 definition
ONLY IF
 clause (a) of the definition of "chocolate wheel" applies AND
 clause (b) of the definition of "chocolate wheel" applies AND
 clause (c) of the definition of "chocolate wheel" applies

RULE Community Gaming Regulation 2020 Regulation 3 "chocolate wheel" (a)
PROVIDES
clause (a) of the definition of "chocolate wheel" applies ONLY IF
 numbered tickets are sold to participants

RULE Community Gaming Regulation 2020 Regulation 3 "chocolate wheel" (b)
PROVIDES
clause (b) of the definition of "chocolate wheel" applies ONLY IF
 a wheel is spun to determine the prize winners based on
 the numbers on the tickets corresponding to numbers on the wheel

RULE Community Gaming Regulation 2020 Regulation 3 "chocolate wheel" (c)
PROVIDES
clause (c) of the definition of "chocolate wheel" applies ONLY IF
 a participant wins a prize if the participant holds a ticket that
 corresponds to the number on which the wheel comes to rest after being
 spun

RULE Community Gaming Regulation 2020 Regulation 3 "draw lottery" PROVIDES
the gaming activity is a "draw lottery" under the regulation 3 definition
ONLY IF
 the gaming activity is a "lottery" under the regulation 3 definition AND
 clause (a) of the definition of "draw lottery" applies AND
 clause (b) of the definition of "draw lottery" applies AND
 clause (c) of the definition of "draw lottery" applies

RULE Community Gaming Regulation 2020 Regulation 3 "draw lottery" (a)
PROVIDES
clause (a) of the definition of "draw lottery" applies ONLY IF
 numbered tickets are sold to participants in the lottery

RULE Community Gaming Regulation 2020 Regulation 3 "draw lottery" (b)
PROVIDES
clause (b) of the definition of "draw lottery" applies ONLY IF
 a draw is held in which one or more numbers (corresponding to the
 numbers on the tickets) is or are selected at random

RULE Community Gaming Regulation 2020 Regulation 3 "draw lottery" (c)
PROVIDES
clause (c) of the definition of "draw lottery" applies ONLY IF
 prizes are distributed to the participants holding the tickets
 corresponding to the numbers selected

RULE Community Gaming Regulation 2020 Regulation 3 "free lottery" PROVIDES
the gaming activity is a "free lottery" under the regulation 3 definition
ONLY IF
 the gaming activity is a permitted free lottery under regulation 10

RULE Community Gaming Regulation 2020 Regulation 3 "gross proceeds" PROVIDES
"gross proceeds" of a gaming activity means the total receipts received
from the sale of tickets or from other payments by participants and
donations before deduction of expenses

Coding with yscript Appendix 7 190

RULE Community Gaming Regulation 2020 Regulation 3 "housie" PROVIDES
"housie" is defined in regulation 5(1)

RULE Community Gaming Regulation 2020 Regulation 3 "liquor component"
PROVIDES
"liquor component" means a part of a prize in a gaming activity consisting
of or including liquor

RULE Community Gaming Regulation 2020 Regulation 3 "lottery" PROVIDES
the gaming activity is a "lottery" under the regulation 3 definition ONLY IF
 the gaming activity is a game in which prizes are awarded by lot

RULE Community Gaming Regulation 2020 Regulation 3 "lucky envelopes" PROVIDES
the gaming activity is "lucky envelopes" under the regulation 3 definition
ONLY IF
 clause (a) of the definition of "lucky envelopes" applies AND
 clause (b) of the definition of "lucky envelopes" applies

RULE Community Gaming Regulation 2020 Regulation 3 "lucky envelopes" (a)
PROVIDES
clause (a) of the definition of "lucky envelopes" applies ONLY IF
 the player purchases a ticket that contains a concealed number

RULE Community Gaming Regulation 2020 Regulation 3 "lucky envelopes" (b)
PROVIDES
clause (b) of the definition of "lucky envelopes" applies ONLY IF
 the player wins a prize if the concealed number matches a number
 displayed at the point of sale of the tickets

RULE Community Gaming Regulation 2020 Regulation 3 "mini-numbers lottery"
PROVIDES
the gaming activity is a "mini-numbers lottery" under the regulation 3
definition ONLY IF
 the gaming activity is a game in which participants choose or attempt to
 forecast, from designated numbers, fewer numbers to be drawn on a random
 basis

RULE Community Gaming Regulation 2020 Regulation 3 "no-draw lottery" PROVIDES
the gaming activity is a "no-draw lottery" under the regulation 3
definition ONLY IF
 the gaming activity is a listed example of a "no-draw lottery" AND/OR
 the gaming activity is not a listed example of a "no-draw lottery" AND
 clause (a) of the definition of "no-draw lottery" applies AND
 clause (b) of the definition of "no-draw lottery" applies AND
 clause (c) of the definition of "no-draw lottery" applies AND
 clause (d) of the definition of "no-draw lottery" applies

RULE Community Gaming Regulation 2020 Regulation 3 "no-draw lottery" (a)
PROVIDES
clause (a) of the definition of "no-draw lottery" applies ONLY IF
 participants purchase a right to participate in the gaming activity

RULE Community Gaming Regulation 2020 Regulation 3 "no-draw lottery" (b)
PROVIDES
clause (b) of the definition of "no-draw lottery" applies ONLY IF
 each ticket, or card or board conferring the right to participate,
 has a hidden symbol (or a set of hidden symbols) that can be exposed
 by removing a covering of paper or other opaque material

RULE Community Gaming Regulation 2020 Regulation 3 "no-draw lottery" (c)
PROVIDES
clause (c) of the definition of "no-draw lottery" applies ONLY IF
 the hidden symbols (or sets of hidden symbols) including prizewinning
 symbols (or sets of prizewinning symbols) are randomly distributed
 among the tickets or cards

Appendix 7 yscript Code Examples 191

RULE Community Gaming Regulation 2020 Regulation 3 "no-draw lottery" (d)
PROVIDES
clause (d) of the definition of "no-draw lottery" applies ONLY IF
 a participant, on exposing a hidden symbol (or set of hidden symbols)
 that accords with another symbol (or set of symbols) specified in the
 rules of the gaming activity (whether or not displayed on the ticket or
 card), has a right under those rules to receive a specified prize

RULE Community Gaming Regulation 2020 Regulation 3 "no-draw lottery" examples
PROVIDES
the gaming activity is a listed example of a "no-draw lottery" ONLY IF
 the gaming activity is a break-open lottery, scratch lottery or football
 double

RULE Community Gaming Regulation 2020 Regulation 3 "no-profit
organisation" (1) PROVIDES
the purpose of raising funds is to support a non-profit organisation under
the regulation 3 definition ONLY IF
 the purpose of raising funds is to support a non-profit incorporated or
 unincorporated body not formed or conducted for private gain

RULE Community Gaming Regulation 2020 Regulation 3 "no-profit
organisation" (2) PROVIDES
the fund-raising organisation is a "non-profit organisation" under the
regulation 3
definition
ONLY IF
 the organisation is a non-profit incorporated or unincorporated body
 not formed or conducted for private gain

RULE Community Gaming Regulation 2020 Regulation 3 "no-profit
organisation" (3) PROVIDES
the gaming activity is conducted by or on behalf of a non-profit
organisation under the regulation 3 definition ONLY IF
 the gaming activity is conducted by or on behalf of a non-profit
 incorporated or unincorporated body not formed or conducted for
 private gain

RULE Community Gaming Regulation 2020 Regulation 3 "progressive lottery"
PROVIDES
the gaming activity is a "progressive lottery" under the regulation 3
definition ONLY IF
 clause (a) of the definition of progressive lottery applies OR
 clause (b) of the definition of progressive lottery applies OR
 the gaming activity is not a tipping competition or other gaming activity
 conducted along substantially similar lines AND
 the gaming activity is a progressive lottery where a number
 of draws may be conducted on various dates over a stipulated period of
 time AND
 the gaming activity is not a "sweep" under the regulation 3
 definition AND
 the gaming activity is not a "calcutta" under the regulation 3
 definition

RULE Community Gaming Regulation 2020 Regulation 3 "progressive lottery" (a)
PROVIDES
clause (a) of the definition of progressive lottery applies ONLY IF
 the gaming activity is a hundred club, silver circles or other
 activity conducted along substantially similar lines

RULE Community Gaming Regulation 2020 Regulation 3 "progressive lottery" (b)
PROVIDES
clause (b) of the definition of progressive lottery applies ONLY IF
 the gaming activity is a tipping competition or other gaming activity
 conducted along substantially similar lines AND
 clause (b)(i) of the definition of "tipping competition" applies AND

Coding with yscript Appendix 7 192

 clause (b)(ii) of the definition of "tipping competition" applies AND
 clause (b)(iii) of the definition of "tipping competition" applies AND
 clause (b)(iv) of the definition of "tipping competition" applies

RULE Community Gaming Regulation 2020 Regulation 3 "progressive
lottery" (b)(i) PROVIDES
clause (b)(i) of the definition of "tipping competition" applies ONLY IF
 the player predicts the outcome or results of a sporting or other
 contingency

RULE Community Gaming Regulation 2020 Regulation 3 "progressive
lottery" (b)(ii) PROVIDES
clause (b)(ii) of the definition of "tipping competition" applies ONLY IF
 points are awarded for successful predictions

RULE Community Gaming Regulation 2020 Regulation 3 "progressive
lottery" (b)(iii) PROVIDES
clause (b)(iii) of the definition of "tipping competition" applies ONLY IF
 the prizes are wholly distributed in accordance with the rules of the
 competition

RULE Community Gaming Regulation 2020 Regulation 3 "progressive
lottery" (b)(iv) PROVIDES
clause (b)(iv) of the definition of "tipping competition" applies ONLY IF
 periodical prizes may be awarded (in accordance with the rules of the
 competition

RULE Community Gaming Regulation 2020 Regulation 3 "publish"
PROVIDES
"publish" has the same meaning as in section 9 of the
Community Gaming Act 2018

RULE Community Gaming Regulation 2020 Regulation 3 "registered club"
PROVIDES
the fund-raising organisation is a "registered club" under the Regulation 3
definition
ONLY IF
 the organisation is a club that holds a club licence under the
 Liquor Act 2007

RULE Community Gaming Regulation 2020 Regulation 3 "session"
PROVIDES
"session" of a gaming activity means a number of games of the activity
played in succession on the same occasion at the same place

RULE Community Gaming Regulation 2020 Regulation 3 "sweep"
PROVIDES
the gaming activity is a "sweep" under the regulation 3 definition ONLY IF
 the gaming activity is a game in which each participant pays a fee for a
 chance to win by lot a right in respect of a competitor in a sporting
 or racing event AND
 the rights in respect of a competitor in a sporting or racing event are
 not auctioned AND
 the gaming activity is not a "calcutta" under the regulation 3 definition

RULE Community Gaming Regulation 2020 Regulation 3 "symbol"
PROVIDES
"symbol" includes amount, word or picture

RULE Community Gaming Regulation 2020 Regulation 3 "the Act"
PROVIDES
"the Act" means the Community Gaming Act 2018

RULE Community Gaming Regulation 2020 Regulation 3 "ticket"
PROVIDES
"ticket" includes a right to participate in a gaming activity

Appendix 7 yscript Code Examples 193

RULE Community Gaming Regulation 2020 Regulation 3 "trade promotion gaming
activity"
PROVIDES
the gaming activity is a "trade promotion gaming activity" under the
regulation 3 definition ONLY IF
 the gaming activity is conducted for the purpose of promoting goods or
 services provided by a business

RULE Community Gaming Regulation 2020 Part 2 - Permitted gaming
activities PROVIDES
the gaming activity is a permitted gaming activity under Part 2 ONLY IF
 the gaming activity is covered by the Regulations AND
 the gaming activity is a permitted "art union gaming activity" under
 regulation 4 AND/OR
 the gaming activity is permitted "housie" or "bingo"
 under regulation 5 AND/OR
 the gaming activity is a permitted "draw lottery" under
 regulation 6 AND/OR
 the gaming activity is a permitted no-draw lottery under
 regulation 7 AND/OR
 the gaming activity is a permitted mini-numbers lottery under
 regulation 8 AND/OR
 the gaming activity is a permitted progressive lottery under
 regulation 9 AND/OR
 the gaming activity is a permitted free lottery under
 regulation 10 AND/OR
 the gaming activity is a permitted promotional raffle conducted by a
 registered club under regulation 11 AND/OR
 the gaming activity is a permitted gaming activity for charitable
 purposes under regulation 12 AND/OR
 the gaming activity is a permitted sweep or calcutta under
 regulation 13 AND/OR
 the gaming activity is a permitted trade promotion gaming activity under
 regulation 14

RULE Community Gaming Regulation 2020 Regulation 4 - Art union gaming
activities PROVIDES
the gaming activity is a permitted "art union gaming activity" under
regulation 4 ONLY IF
 the gaming activity is an art union gaming activity AND
 regulation 4(d) applies AND
 regulation 4(a) applies AND
 regulation 4(b) applies AND
 regulation 4(c) applies

RULE Community Gaming Regulation 2020 Regulation 4 "art union gaming
activity" PROVIDES
the gaming activity is an art union gaming activity ONLY IF
 the gaming activity is run by an "art union" under the regulation 3
 definition AND
 the gaming activity is a game in which prizes are awarded by lot

RULE Community Gaming Regulation 2020 Regulation 4(a) PROVIDES
regulation 4(a) applies ONLY IF
 at least 30% of the gross proceeds of the gaming activity are paid
 to the benefiting organisation

RULE Community Gaming Regulation 2020 Regulation 4(a) Calculation PROVIDES
at least 30% of the gross proceeds of the gaming activity are paid to
the benefiting organisation ONLY IF
 the amount of the gross proceeds of the gaming activity TIMES 0.3
 LESSEQUAL THAN the amount paid to the benefiting organisation

RULE Community Gaming Regulation 2020 Regulation 4(b) PROVIDES
regulation 4(b) applies ONLY IF

Coding with yscript Appendix 7 194

 the total value of all of the prizes exceeds $30,000

RULE Community Gaming Regulation 2020 Regulation 4(b) Calculation PROVIDES
the total value of all of the prizes exceeds $30,000 ONLY IF
 the total value of all of the prizes GREATER THAN $30,000

RULE Community Gaming Regulation 2020 Regulation 4(c) PROVIDES
regulation 4(c) applies ONLY IF
 the maximum amount of money payable as a separate prize does not
 exceed $30,000

RULE Community Gaming Regulation 2020 Regulation 4(c) Calculation PROVIDES
the maximum amount of money payable as a separate prize does not
exceed $30,000 ONLY IF
 the maximum amount of money payable as a separate prize
 LESSEQUAL THAN $30,000

RULE Community Gaming Regulation 2020 Regulation 4(d) PROVIDES
regulation 4(d) applies ONLY IF
 the person conducting the gaming activity holds an authority for
 the gaming activity AND
 the authority is in force AND
 the gaming activity is conducted in accordance with the authority

RULE Community Gaming Regulation 2020 Regulation 5 - Housie or bingo
PROVIDES
the gaming activity is permitted "housie" or "bingo" under
regulation 5
ONLY IF
 the gaming activity meets the definition of "housie" or "bingo" under
 regulation 5(1) AND
 the gaming activity is Charity housie under regulation 5(2) AND/OR
 the gaming activity is Social housie under regulation 5(3) AND/OR
 the gaming activity is Club bingo under regulation 5(4)

RULE Community Gaming Regulation 2020 Regulation 5(1) PROVIDES
the gaming activity meets the definition of "housie" or "bingo" under
regulation 5(1) ONLY IF
 regulation 5(1)(a) is satisfied AND
 regulation 5(1)(b) is satisfied AND
 regulation 5(1)(c) is satisfied

RULE Community Gaming Regulation 2020 Regulation 5(1)(a) PROVIDES
regulation 5(1)(a) is satisfied ONLY IF
 the gaming activity is housie or bingo that is played by one or more
 participants using cards or a device with numbered spaces or symbols

RULE Community Gaming Regulation 2020 Regulation 5(1)(b) PROVIDES
regulation 5(1)(b) is satisfied ONLY IF
 numbered spaces or symbols identified randomly and announced during play
 are marked off by each participant who has a card or device on which the
 numbered space or symbol is displayed

RULE Community Gaming Regulation 2020 Regulation 5(1)(c) PROVIDES
regulation 5(1)(c) is satisfied ONLY IF
 the game is won by the participant who is first able to mark off all
 numbered spaces or symbols on the card or device that are required to be
 marked off for a win

RULE Community Gaming Regulation 2020 Regulation 5(2) PROVIDES
the gaming activity is Charity housie under regulation 5(2) ONLY IF
 regulation 5(2)(a) is satisfied AND
 regulation 5(2)(b) is satisfied AND
 regulation 5(2)(c) is satisfied AND
 regulation 5(2)(d) is satisfied AND
 regulation 5(2)(e) is satisfied

Appendix 7 yscript Code Examples 195

RULE Community Gaming Regulation 2020 Regulation 5(2)(a) PROVIDES
regulation 5(2)(a) is satisfied ONLY IF
 the gaming activity is conducted by or on behalf of a charitable
 organisation under the regulation 3 definition

RULE Community Gaming Regulation 2020 Regulation 5(2)(b) PROVIDES
regulation 5(2)(b) is satisfied ONLY IF
 at least 12.5% of the gross proceeds of the gaming activity are
 paid to the benefiting organisation

RULE Community Gaming Regulation 2020 Regulation 5(2)(b) Calculation PROVIDES
at least 12.5% of the gross proceeds of the gaming activity are
paid to the benefiting organisation ONLY IF
 the amount paid to the benefiting organisation GREATEREQUAL THAN
 the amount of the gross proceeds of the gaming activity TIMES 0.125

RULE Community Gaming Regulation 2020 Regulation 5(2)(c) PROVIDES
regulation 5(2)(c) is satisfied ONLY IF
 the total value of the expenses of conducting the gaming activity
 (excluding the cost of prizes) is not more than 12.5% of the gross
 proceeds of the gaming activity

RULE Community Gaming Regulation 2020 Regulation 5(2)(c) Calculation PROVIDES
the total value of the expenses of conducting the gaming activity
(excluding the cost of prizes) is not more than 12.5% of the gross
proceeds of the gaming activity ONLY IF
 the total value of the expenses of conducting the gaming activity
 (excluding the cost of prizes) LESSEQUAL THAN the amount of the
 gross proceeds of the gaming activity TIMES 0.125

RULE Community Gaming Regulation 2020 Regulation 5(2)(d) PROVIDES
regulation 5(2)(d) is satisfied ONLY IF
 the total value of all of the prizes for one session of the gaming
 activity is not more than $10,000 AND
 the total value of all of the prizes for one session is not more than 75%
 of the gross proceeds from the gaming activity

RULE Community Gaming Regulation 2020 Regulation 5(2)(d) Calculation 1
PROVIDES
the total value of all of the prizes for one session of the gaming activity
is not more than $10,000 ONLY IF
 the total value of all of the prizes for one session of the
 gaming activity LESSEQUAL THAN $10,000

RULE Community Gaming Regulation 2020 Regulation 5(2)(d) Calculation 2
PROVIDES
the total value of all of the prizes for one session is not more than 75%
of the gross proceeds from the gaming activity ONLY IF
 the total value of all of the prizes for one session of the
 gaming activity LESSEQUAL THAN the amount of the gross proceeds of
 the gaming activity TIMES 0.75

RULE Community Gaming Regulation 2020 Regulation 5(2)(e) PROVIDES
regulation 5(2)(e) is satisfied ONLY IF
 no more than 48 tickets are permitted to be sold to the same participant

RULE Community Gaming Regulation 2020 Regulation 5(2)(e) Calculation PROVIDES
no more than 48 tickets are permitted to be sold to the same participant
ONLY IF
 the maximum number of tickets that can be sold to the same participant
 LESSEQUAL THAN 48

RULE Community Gaming Regulation 2020 Regulation 5(3) PROVIDES
the gaming activity is Social housie under regulation 5(3) ONLY IF
 regulation 5(3)(a) is satisfied AND

Coding with yscript Appendix 7 196

 regulation 5(3)(b) is satisfied AND
 regulation 5(3)(c) is satisfied AND/OR
 regulation 5(3)(d) applies AND
 regulation 5(3)(e) is satisfied

RULE Community Gaming Regulation 2020 Regulation 5(3)(a) PROVIDES
regulation 5(3)(a) is satisfied ONLY IF
 the gaming activity is conducted solely for social purposes

RULE Community Gaming Regulation 2020 Regulation 5(3)(b) PROVIDES
regulation 5(3)(b) is satisfied ONLY IF
 the gaming activity is not conducted on premises to which a licence
 under the Liquor Act 2007 relates

RULE Community Gaming Regulation 2020 Regulation 5(3)(c) PROVIDES
regulation 5(3)(c) is satisfied ONLY IF
 the total value of all of the prizes for one session of the
 gaming activity is not more than $40 AND
 regulation 5(3)(d) does not apply

RULE Community Gaming Regulation 2020 Regulation 5(3)(c) Calculation PROVIDES
the total value of all of the prizes for one session of the
gaming activity is not more than $40 ONLY IF
 the total value of all of the prizes for one session of the
 gaming activity LESSEQUAL THAN $40

RULE Community Gaming Regulation 2020 Regulation 5(3)(d) PROVIDES
regulation 5(3)(d) applies ONLY IF
 the value of any jackpot prize is not more than $200

RULE Community Gaming Regulation 2020 Regulation 5(3)(d) Calculation PROVIDES
the value of any jackpot prize is not more than $200 ONLY IF
 the value of any jackpot prize LESSEQUAL THAN $200

RULE Community Gaming Regulation 2020 Regulation 5(3)(e) PROVIDES
regulation 5(3)(e) is satisfied ONLY IF
 the total amount invested by participants in a session of the gaming
 activity is returned to participants, after the costs of prizes and
 expenses of conducting the session are deducted

RULE Community Gaming Regulation 2020 Regulation 5(3)(e) Calculation PROVIDES
the total amount invested by participants in a session of the gaming
activity is returned to participants, after the costs of prizes and
expenses of conducting the session are deducted ONLY IF
 the total amount invested by participants in a session of the gaming
 activity MINUS the total cost of prizes and expenses EQUALS
 the amount returned to participants

RULE Community Gaming Regulation 2020 Regulation 5(4) PROVIDES
the gaming activity is Club bingo under regulation 5(4) ONLY IF
 regulation 5(4)(a) is satisfied AND
 regulation 5(4)(d) is satisfied AND
 regulation 5(4)(b) is satisfied AND/OR
 regulation 5(4)(c) applies

RULE Community Gaming Regulation 2020 Regulation 5(4)(a) PROVIDES
regulation 5(4)(a) is satisfied ONLY IF
 the gaming activity is conducted by or on the authority of a
 registered club on club premises for the purpose of attracting patronage
 to the club's facilities

RULE Community Gaming Regulation 2020 Regulation 5(4)(b) PROVIDES
regulation 5(4)(b) is satisfied ONLY IF
 the total value of all of the prizes for one game of the
 gaming activity is not more than $70

Appendix 7 yscript Code Examples 197

RULE Community Gaming Regulation 2020 Regulation 5(4)(b) Calculation PROVIDES
the total value of all of the prizes for one game of the gaming
activity is not more than $70 ONLY IF
 the total value of all of the prizes for one game of the gaming
 activity LESSEQUAL THAN $70

RULE Community Gaming Regulation 2020 Regulation 5(4)(c) PROVIDES
regulation 5(4)(c) applies ONLY IF
 a single bonus prize of more than $70 in value is offered at the end
 of a session of club bingo

RULE Community Gaming Regulation 2020 Regulation 5(4)(d) PROVIDES
regulation 5(4)(d) is satisfied ONLY IF
 the prizes do not consist of or include money

RULE Community Gaming Regulation 2020 Regulation 6 - Draw lotteries
PROVIDES
the gaming activity is a permitted "draw lottery" under regulation 6 ONLY IF
 the gaming activity is a "draw lottery" under the regulation 3
 definition AND
 regulation 6(a) is satisfied AND
 regulation 6(b) is satisfied AND
 regulation 6(c) is satisfied

RULE Community Gaming Regulation 2020 Regulation 6(a) PROVIDES
regulation 6(a) is satisfied ONLY IF
 the gaming activity is conducted by or on behalf of a charitable
 organisation under the regulation 3 definition OR
 the gaming activity is conducted by or on behalf of a non-profit
 organisation under the regulation 3 definition

RULE Community Gaming Regulation 2020 Regulation 6(b) PROVIDES
regulation 6(b) is satisfied ONLY IF
 at least 40% of the gross proceeds of the gaming activity are paid
 to the benefiting organisation

RULE Community Gaming Regulation 2020 Regulation 6(b) Calculation PROVIDES
at least 40% of the gross proceeds of the gaming activity are paid
to the benefiting organisation ONLY IF
 the amount of the gross proceeds of the gaming activity TIMES 0.4
 LESSEQUAL THAN the amount paid to the benefiting organisation

RULE Community Gaming Regulation 2020 Regulation 6(c) PROVIDES
regulation 6(c) is satisfied ONLY IF
 the total value of all of the prizes is not more than $30,000

RULE Community Gaming Regulation 2020 Regulation 6(c) CALCULATION PROVIDES
the total value of all of the prizes is not more than $30,000 ONLY IF
 the total value of all of the prizes LESSEQUAL THAN $30,000

RULE Community Gaming Regulation 2020 Regulation 7 - No-draw lotteries
PROVIDES
the gaming activity is a permitted no-draw lottery under regulation 7 ONLY IF
 the gaming activity is a "no-draw lottery" under the regulation 3
 definition AND
 regulation 7(a) is satisfied AND
 regulation 7(b) is satisfied AND
 regulation 7(c) is satisfied AND
 regulation 7(d) is satisfied

RULE Community Gaming Regulation 2020 Regulation 7(a) PROVIDES
regulation 7(a) is satisfied ONLY IF
 the gaming activity is conducted by or on behalf of a charitable
 organisation under the regulation 3 definition OR
 the gaming activity is conducted by or on behalf of a non-profit
 organisation under the regulation 3 definition

Coding with yscript Appendix 7 198

RULE Community Gaming Regulation 2020 Regulation 7(b) PROVIDES
regulation 7(b) is satisfied ONLY IF
 at least 40% of the gross proceeds of the gaming activity are
 paid to the benefiting organisation

RULE Community Gaming Regulation 2020 Regulation 7(c) PROVIDES
regulation 7(c) is satisfied ONLY IF
the total value of all of the prizes is not more than $5,000

RULE Community Gaming Regulation 2020 Regulation 7(c) Calculation PROVIDES
the total value of all of the prizes is not more than $5,000 ONLY IF
 the total value of all of the prizes LESSEQUAL THAN $5,000

RULE Community Gaming Regulation 2020 Regulation 7(d) PROVIDES
regulation 7(d) is satisfied ONLY IF
 the total number of tickets produced or obtained for sale for the
 lottery is not more than 3,000

RULE Community Gaming Regulation 2020 Regulation 7(d) Calculation PROVIDES
the total number of tickets produced or obtained for sale for the
lottery is not more than 3,000 ONLY IF
 the total number of tickets produced or obtained for sale
 LESSEQUAL THAN 3000

RULE Community Gaming Regulation 2020 Regulation 8 - Mini-numbers
lotteries PROVIDES
the gaming activity is a permitted mini-numbers lottery under
regulation 8 ONLY IF
 the gaming activity is a "mini-numbers lottery" under the regulation 3
 definition AND
 regulation 8(a) is satisfied AND
 regulation 8(b) is satisfied AND
 regulation 8(c) is satisfied AND
 regulation 8(d) is satisfied

RULE Community Gaming Regulation 2020 Regulation 8(a) PROVIDES
regulation 8(a) is satisfied ONLY IF
 the gaming activity is conducted by or on behalf of a charitable
 organisation under the regulation 3 definition OR
 the gaming activity is conducted by or on behalf of a non-profit
 organisation under the regulation 3 definition

RULE Community Gaming Regulation 2020 Regulation 8(b) PROVIDES
regulation 8(b) is satisfied ONLY IF
 at least 40% of the gross proceeds of the gaming activity are paid
 to the benefiting organisation

RULE Community Gaming Regulation 2020 Regulation 8(c) PROVIDES
regulation 8(c) is satisfied ONLY IF
 the total value of all of the prizes for one session of the gaming
 activity is not more than $20,000

RULE Community Gaming Regulation 2020 Regulation 8(c) Calculation PROVIDES
the total value of all of the prizes for one session of the gaming
activity is not more than $20,000 ONLY IF
 the total value of all of the prizes for one session of the gaming
 activity LESSEQUAL THAN $20,000

RULE Community Gaming Regulation 2020 Regulation 8(d) PROVIDES
regulation 8(d) is satisfied ONLY IF
 the total value of all of the prizes for one session of the gaming
 activity is at least 50% of the gross proceeds of the mini-numbers
 lottery

RULE Community Gaming Regulation 2020 Regulation 8(d) Calculation PROVIDES

Appendix 7 yscript Code Examples 199

the total value of all of the prizes for one session of the gaming
activity is at least 50% of the gross proceeds of the mini-numbers
lottery ONLY IF
 the total value of all of the prizes for one session of the gaming
 activity GREATEREQUAL THAN the amount of the gross proceeds of the gaming
 activity TIMES 0.5

RULE Community Gaming Regulation 2020 Regulation 9 - Progressive
lotteries PROVIDES
the gaming activity is a permitted progressive lottery under
regulation 9 ONLY IF
 the gaming activity is a "progressive lottery" under the regulation 3
 definition AND
 regulation 9(a) is satisfied AND
 regulation 9(b) is satisfied

RULE Community Gaming Regulation 2020 Regulation 9(a) PROVIDES
regulation 9(a) is satisfied ONLY IF
 the maximum amount of money payable as a prize is not more than $7,000

RULE Community Gaming Regulation 2020 Regulation 9(a) Calculation PROVIDES
the maximum amount of money payable as a prize is not more than $7,000
ONLY IF
 the maximum amount of money payable as a prize LESSEQUAL THAN $7,000

RULE Community Gaming Regulation 2020 Regulation 9(b) PROVIDES
regulation 9(b) is satisfied ONLY IF
 the total value of all of the prizes is not more than $30,000 OR
 the person conducting the gaming activity holds an authority to do so AND
 the authority is in force AND
 the gaming activity is conducted in accordance with the authority

RULE Community Gaming Regulation 2020 Regulation 9(b) Calculation PROVIDES
the total value of all of the prizes is not more than $30,000 ONLY IF
 the total value of all of the prizes LESSEQUAL THAN $30,000

RULE Community Gaming Regulation 2020 Regulation 10 - Free lotteries
PROVIDES
the gaming activity is a permitted free lottery under regulation 10 ONLY IF
 the gaming activity is a "lottery" under the regulation 3 definition AND
 regulation 10(b) is satisfied AND
 regulation 10(c) is satisfied AND
 regulation 10(a) is satisfied AND
 regulation 10(d) is satisfied

RULE Community Gaming Regulation 2020 Regulation 10(a) PROVIDES
regulation 10(a) is satisfied ONLY IF
 the gaming activity is not a "progressive lottery" under the regulation 3
 definition AND
 the gaming activity is not a "trade promotion gaming activity" under the
 regulation 3 definition

RULE Community Gaming Regulation 2020 Regulation 10(b) PROVIDES
regulation 10(b) is satisfied ONLY IF
 participation in the lottery is free

RULE Community Gaming Regulation 2020 Regulation 10(c) PROVIDES
regulation 10(c) is satisfied ONLY IF
 the prizes do not consist of or include money

RULE Community Gaming Regulation 2020 Regulation 10(d) PROVIDES
regulation 10(d) is satisfied ONLY IF
 the total value of all of the prizes for the gaming activity is not more
 than $30,000

RULE Community Gaming Regulation 2020 Regulation 11 - Promotional

Coding with yscript Appendix 7 200

raffles conducted by registered clubs PROVIDES
the gaming activity is a permitted promotional raffle conducted by a
registered club under regulation 11 ONLY IF
 the gaming activity is a raffle AND
 the raffle is conducted by or on the authority of a registered club AND
 regulation 11(a) is satisfied AND
 regulation 11(b) is satisfied AND
 regulation 11(e) is satisfied AND
 regulation 11(c) is satisfied AND
 regulation 11(d) is satisfied

RULE Community Gaming Regulation 2020 Regulation 11(a) PROVIDES
regulation 11(a) is satisfied ONLY IF
 the gaming activity is conducted on the registered club's premises

RULE Community Gaming Regulation 2020 Regulation 11(b) PROVIDES
regulation 11(b) is satisfied ONLY IF
 the gaming activity is conducted for the purpose of attracting
 patronage to the registered club's facilities

RULE Community Gaming Regulation 2020 Regulation 11(c) PROVIDES
regulation 11(c) is satisfied ONLY IF
 at least 90% of the gross proceeds of the gaming activity are used to
 meet the cost of the prizes in the gaming activity or other similar
 gaming activities

RULE Community Gaming Regulation 2020 Regulation 11(c) Calculation PROVIDES
at least 90% of the gross proceeds of the gaming activity are used to
meet the cost of the prizes in the gaming activity or other similar
gaming activities ONLY IF
 the cost of the prizes in the gaming activity GREATEREQUAL THAN
 the amount of the gross proceeds of the gaming activity TIMES 0.9

RULE Community Gaming Regulation 2020 Regulation 11(d) PROVIDES
regulation 11(d) is satisfied ONLY IF
 the total value of all of the prizes for one session of the gaming
 activity is not more than $5,000

RULE Community Gaming Regulation 2020 Regulation 11(d) Calculation PROVIDES
the total value of all of the prizes for one session of the gaming
activity is not more than $5,000 ONLY IF
 the total value of all of the prizes for one session of the gaming
 activity LESSEQUAL THAN $5,000

RULE Community Gaming Regulation 2020 Regulation 11(e) PROVIDES
regulation 11(e) is satisfied ONLY IF
 the prizes do not consist of or include money

RULE Community Gaming Regulation 2020 Regulation 12 - Other gaming
activities for charitable purposes PROVIDES
the gaming activity is a permitted gaming activity for charitable purposes
under regulation 12 ONLY IF
 the gaming activity is a "chocolate wheel" under the regulation 3
 definition AND/OR
 the gaming activity is "lucky envelopes" under the regulation 3
 definition AND/OR BEGIN
 the gaming activity is of some other type of gaming activity AND
 regulation 12(2) does not apply END AND
 regulation 12(1) is satisfied

RULE Community Gaming Regulation 2020 Regulation 12(1) PROVIDES
regulation 12(1) is satisfied ONLY IF
 regulation 12(1)(a) is satisfied AND
 regulation 12(1)(b) is satisfied

RULE Community Gaming Regulation 2020 Regulation 12(1)(a) PROVIDES

Appendix 7 yscript Code Examples 201

regulation 12(1)(a) is satisfied ONLY IF
 at least 40% of the gross proceeds of the gaming activity are
 paid to the benefiting organisation

RULE Community Gaming Regulation 2020 Regulation 12(1)(b) PROVIDES
regulation 12(1)(b) is satisfied ONLY IF
 the total value of all of the prizes for one session of the gaming
 activity is not more than $5,000

RULE Community Gaming Regulation 2020 Regulation 12(2) PROVIDES
regulation 12(2) applies ONLY IF
 the gaming activity is a "lottery" under the regulation 3 definition OR
 the gaming activity is a "sweep" under the regulation 3 definition OR
 the gaming activity is an art union gaming activity OR
 the gaming activity meets the definition of "housie" or "bingo" under
 regulation 5(1) OR
 the gaming activity is a "calcutta" under the regulation 3 definition

RULE Community Gaming Regulation 2020 Regulation 13 - Sweeps and
calcuttas PROVIDES
the gaming activity is a permitted sweep or calcutta under regulation 13
ONLY IF
 the gaming activity is a "sweep" under the regulation 3 definition AND/OR
 the gaming activity is a "calcutta" under the regulation 3 definition AND
 regulation 13(1) applies AND
 regulation 13(3) is satisfied AND
 regulation 13(4) is satisfied

RULE Community Gaming Regulation 2020 Regulation 13(1) PROVIDES
regulation 13(1) applies ONLY IF
 the gaming activity is conducted according to regulation 13(1)(a) AND
 regulation 13(1)(b) applies AND/OR
 regulation 13(2) applies AND
 regulation 13(1)(c) is satisfied

RULE Community Gaming Regulation 2020 Regulation 13(1)(a) PROVIDES
the gaming activity is conducted according to regulation 13(1)(a) ONLY IF
 regulation 13(1)(a)(i) applies OR
 regulation 13(1)(a)(ii) applies

RULE Community Gaming Regulation 2020 Regulation 13(1)(a)(i) PROVIDES
regulation 13(1)(a)(i) applies ONLY IF
 the gaming activity is conducted for or on behalf of a fund-raising
 organisation AND
 the fund-raising organisation is an "approved fund-raising
 organisation" as defined in regulation 13(6)

RULE Community Gaming Regulation 2020 Regulation 13(1)(a)(ii) PROVIDES
regulation 13(1)(a)(ii) applies ONLY IF
 the gaming activity is conducted for social purposes

RULE Community Gaming Regulation 2020 Regulation 13(1)(b) PROVIDES
regulation 13(1)(b) applies ONLY IF
 there is not a payment or benefit payable for the right to participate
 in the gaming activity, other than the stake money for the gaming
 activity

RULE Community Gaming Regulation 2020 Regulation 13(1)(c) PROVIDES
regulation 13(1)(c) is satisfied ONLY IF
 the total value of all of the prizes for the gaming activity is not more
 than $30,000 OR
 the person conducting the gaming activity holds an authority to do so AND
 the authority is in force AND
 the gaming activity is conducted in accordance with the authority

RULE Community Gaming Regulation 2020 Regulation 13(1)(c) Calculation

Coding with yscript Appendix 7 202

PROVIDES
the total value of all of the prizes for the gaming activity is not more
than $30,000 ONLY IF
 the total value of all of the prizes LESSEQUAL THAN $30,000

RULE Community Gaming Regulation 2020 Regulation 13(2) PROVIDES
regulation 13(2) applies ONLY IF
 the payment is a fee charged for entry to a venue or function at which
 the gaming activity is conducted AND
 the payment is not related to the gaming activity AND
 the payment is usually charged for entry to the venue or function

RULE Community Gaming Regulation 2020 Regulation 13(3) PROVIDES
regulation 13(3) is satisfied ONLY IF
 regulation 13(1)(a)(i) does not apply OR
 regulation 13(3)(a) is satisfied AND
 regulation 13(3)(b) is satisfied

RULE Community Gaming Regulation 2020 Regulation 13(3)(a) PROVIDES
regulation 13(3)(a) is satisfied ONLY IF
 a reasonable amount of the gross proceeds is paid to the
 approved fund-raising organisation

RULE Community Gaming Regulation 2020 Regulation 13(3)(b) PROVIDES
regulation 13(3)(b) is satisfied ONLY IF
 the amount is agreed in writing before the sweep or calcutta is conducted

RULE Community Gaming Regulation 2020 Regulation 13(4) PROVIDES
regulation 13(4) is satisfied ONLY IF
 regulation 13(1)(a)(i) applies OR
 the gross proceeds are distributed to the holders of the rights in
 respect of the successful participants in the event to which the sweep
 or calcutta relates

RULE Community Gaming Regulation 2020 Regulation 13(5) PROVIDES
the amount of proceeds remaining after payment of prize money and the
costs and expenses of the gaming activity may be paid for the purposes
of the fund-raising organisation, even if that amount exceeds the
agreed amount of the gross proceeds

RULE Community Gaming Regulation 2020 Regulation 13(6) PROVIDES
the fund-raising organisation is an "approved fund-raising organisation"
as defined in regulation 13(6) ONLY IF
 regulation 13(6)(a) applies OR
 regulation 13(6)(b) applies OR
 regulation 13(6)(c) applies OR
 regulation 13(6)(d) applies OR
 regulation 13(6)(e) applies OR
 regulation 13(6)(f) applies

RULE Community Gaming Regulation 2020 Regulation 13(6)(a) PROVIDES
regulation 13(6)(a) applies ONLY IF
 the fund-raising organisation is a "charitable organisation" under
 the regulation 3 definition OR
 the fund-raising organisation is a "non-profit organisation" under the
 regulation 3 definition

RULE Community Gaming Regulation 2020 Regulation 13(6)(b) PROVIDES
regulation 13(6)(b) applies ONLY IF
 the fund-raising organisation is a political party or trade union

RULE Community Gaming Regulation 2020 Regulation 13(6)(c) PROVIDES
regulation 13(6)(c) applies ONLY IF
 the fund-raising organisation is a "registered club" under the
 Regulation 3 definition

Appendix 7 yscript Code Examples 203

RULE Community Gaming Regulation 2020 Regulation 13(6)(d) PROVIDES
regulation 13(6)(d) applies ONLY IF
 the fund-raising organisation is a club registered under the Rules
 of Racing of Racing New South Wales

RULE Community Gaming Regulation 2020 Regulation 13(6)(e) PROVIDES
regulation 13(6)(e) applies ONLY IF
 the fund-raising organisation is a greyhound racing club within the
 meaning of the Greyhound Racing Act 2017

RULE Community Gaming Regulation 2020 Regulation 13(6)(f) PROVIDES
regulation 13(6)(f) applies ONLY IF
 the fund-raising organisation is a harness racing club within the
 meaning of the Harness Racing Act 2009

RULE Community Gaming Regulation 2020 Regulation 14 - Trade promotion
gaming activities PROVIDES
the gaming activity is a permitted trade promotion gaming activity under
regulation 14 ONLY IF
 the gaming activity is a "trade promotion gaming activity" under the
 regulation 3 definition AND
 regulation 14(a) is satisfied AND
 regulation 14(b) is satisfied AND
 regulation 14(c) is satisfied

RULE Community Gaming Regulation 2020 Regulation 14(a) PROVIDES
regulation 14(a) is satisfied ONLY IF
 an entry or other fee is not charged to participate in the gaming
 activity

RULE Community Gaming Regulation 2020 Regulation 14(b) PROVIDES
regulation 14(b) is satisfied ONLY IF
 written consent has been obtained to the conduct of the gaming
 activity from a person who is authorised by the business benefiting
 from the gaming activity to provide that consent

RULE Community Gaming Regulation 2020 Regulation 14(c) PROVIDES
regulation 14(c) is satisfied ONLY IF
 the total value of all of the prizes is not more than $10,000 OR
 the person conducting the gaming activity holds an authority for
 the activity AND
 the authority is in force AND
 the gaming activity is conducted in accordance with the authority

RULE Community Gaming Regulation 2020 Regulation 14(c) Calculation PROVIDES
the total value of all of the prizes is not more than $10,000 ONLY IF
 the total value of all of the prizes LESSEQUAL THAN $10,000

MONEY the amount paid to the benefiting organisation
 RANGE $0 TO the amount of the gross proceeds of the gaming activity

MONEY the maximum amount of money payable as a separate prize
 RANGE $0 TO the total value of all of the prizes

MONEY the total value of the expenses of conducting the gaming activity
(excluding the cost of prizes)
 RANGE $0 TO the amount of the gross proceeds of the gaming activity MINUS
 the amount paid to the benefiting organisation

STRING the type of gaming activity that you are proposing
 EXPLAIN AS The Community Gaming Regulations 2020 regulate the conduct
 of gambling for social, charitable and non-profit purposes in NSW. The
 Regulations provide for 11 categories of permitted gaming activities.
 EXPLAIN Art union AS You will now be asked a series of questions
 to see whether or not your proposed activity is covered by the "Art Union
 gaming activity" provisions which are contained in regulation 4.

Coding with yscript Appendix 7 204

 EXPLAIN Housie or bingo AS You will now be asked a series of
 questions to see whether or not your proposed activity is covered by the
 "housie or bingo" provisions which are contained in regulation 5.
 EXPLAIN Draw lottery (including raffles and guessing competitions) AS
 You will now be asked a series of questions to see whether or not your
 proposed activity is covered by the "Draw Lottery" provisions which are
 contained in regulation 6.
 EXPLAIN No-draw lottery (including break-open lotteries, scratch lotteries
 and football doubles) AS You will now be asked a series of questions to
 see whether or not your proposed activity is covered by the "No-Draw
 Lottery" provisions which are contained in regulation 7.
 EXPLAIN Mini-numbers lottery AS You will now be asked a series of
 questions to see whether or not your proposed activity is covered by the
 "Mini-numbers Lottery" provisions which are contained in regulation 8.
 EXPLAIN Progressive lottery (including a hundred club, silver circles and
 tipping competitions) AS You will now be asked a series of questions to
 see whether or not your proposed activity is covered by the
 "Progressive Lottery" provisions which are contained in regulation 9.
 EXPLAIN Free lottery (including lucky door or lucky seat promotions) AS
 You will now be asked a series of questions to see whether or not
 your proposed activity is covered by the "Free Lottery"
 provisions which are contained in regulation 10.
 EXPLAIN Promotional raffle conduct by a registered club AS
 You will now be asked a series of questions to see whether or not
 your proposed activity is covered by the "Registered Club Promotional
 Raffle" provisions which are contained in regulation 11.
 EXPLAIN Other gaming activity (including a chocolate wheel or lucky
 envelopes) for charitable purposes AS You will now be asked a series
 of questions to see whether or not your proposed activity is covered by
 the "Other gaming activities" provisions which are contained in
 regulation 12."
 EXPLAIN Sweep or calcutta AS You will now be asked a series of questions
 to see whether or not your proposed activity is covered by the "Sweep or
 Calcutta" provisions which are contained in regulation 13.
 EXPLAIN Trade promotion gaming activity (including card jackpot games) AS
 You will now be asked a series of questions to see whether
 your proposed activity is covered by the "Trade Promotion" provisions
 which are contained in regulation 14.
 RANGE "Art union"
 RANGE "Housie or bingo"
 RANGE "Draw lottery (including raffles and guessing competitions)"
 RANGE "No-draw lottery (including break-open lotteries, scratch lotteries
 and football doubles)"
 RANGE "Mini-numbers lottery"
 RANGE "Progressive lottery (including a hundred club, silver circles and
 tipping competitions)"
 RANGE "Free lottery (including lucky door or lucky seat promotions)"
 RANGE "Promotional raffle conduct by a registered club"
 RANGE "Other gaming activity (including a chocolate wheel or lucky
 envelopes) for charitable purposes"
 RANGE "Sweep or calcutta"
 RANGE "Trade promotion gaming activity (including card jackpot games)"

GOAL RULE Community Gaming Regulations 2020 (NSW) PROVIDES
IF the type of gaming activity that you are proposing EQUALS "Art union"
THEN BEGIN
 DETERMINE IF the gaming activity is a permitted "art union gaming
 activity" under regulation 4
END
IF the type of gaming activity that you are proposing EQUALS "Housie or
Bingo" THEN BEGIN
 DETERMINE IF the gaming activity is permitted "housie" or "bingo"
 under regulation 5
END
IF the type of gaming activity that you are proposing EQUALS "Draw lottery
(including raffles and guessing competitions)" THEN BEGIN

Appendix 7 yscript Code Examples 205

 DETERMINE IF the gaming activity is a permitted "draw lottery" under
 regulation 6
END
IF the type of gaming activity that you are proposing EQUALS "No-draw
lottery (including break-open lotteries, scratch lotteries and football
doubles)" THEN BEGIN
 DETERMINE IF the gaming activity is a permitted no-draw lottery under
 regulation 7
END
IF the type of gaming activity that you are proposing EQUALS "Mini-numbers
lottery" THEN BEGIN
 DETERMINE IF the gaming activity is a permitted mini-numbers lottery
 under regulation 8
END
IF the type of gaming activity that you are proposing EQUALS "Progressive
lottery (including a hundred club, silver circles and tipping competitions)"
THEN BEGIN
 DETERMINE IF the gaming activity is a permitted progressive lottery under
 regulation 9
END
IF the type of gaming activity that you are proposing EQUALS "Free lottery
(including lucky door or lucky seat promotions)" THEN BEGIN
 DETERMINE IF the gaming activity is a permitted free lottery under
 regulation 10
END
IF the type of gaming activity that you are proposing EQUALS "Promotional
raffle conduct by a registered club" THEN BEGIN
 DETERMINE IF the gaming activity is a permitted promotional raffle
 conducted by a registered club under regulation 11
END
IF the type of gaming activity that you are proposing EQUALS "Other gaming
activity (including a chocolate wheel or lucky envelopes) for charitable
purposes" THEN BEGIN
 DETERMINE IF the gaming activity is a permitted gaming activity for
 charitable purposes under regulation 12
END
IF the type of gaming activity that you are proposing EQUALS "Sweep or
calcutta" THEN BEGIN
 DETERMINE IF the gaming activity is a permitted sweep or calcutta under
 regulation 13
END
IF the type of gaming activity that you are proposing EQUALS "Trade
promotion gaming activity (including card jackpot games)" THEN BEGIN
 DETERMINE IF the gaming activity is a permitted trade promotion gaming
 activity under regulation 14
END

Coding with yscript Appendix 7 206

INDEX

A
ALIAS declaration, 58, 98
aliases, 58
analogous reasoning. See Examples
AND operator, 34
AND/OR operator, 34
AND/OR/WITH operator, 34
AND/WITH operator, 34
API Calls, 149

Alphabetical List, 150
Fundamental Routines, 149

API Examples
C/C++, 154
Perl, 155
Python, 155
Ruby, 156

application examples
Commonwealth Constitution s44, 167
Community Gaming Regulation 2020, 187
Modern Slavery Act 2020, 171

arithmetic operators, 35
AS keyword. See translations
ASSERT keyword, 63, See assertions
assertions, 63
assignments, 63, 143

assertions, 63
ATTACH declaration, 58, 97
attachments, 97, 140
Attachments, 58
auxiliary verbs, 42

list, 43
preferred, 44

B
BACKWARD qualifier, 72
basic types. See types
BEGIN keyword. See BEGIN-END
BEGIN-END, 34, 63
blanks, 24
BOOLEAN keyword. See basic types
BY keyword. See operators, divided

C
C/C++, 154
CALL statement, 66

FROM qualifier, 67
case sensitivity, 24
CASE-WHEN statement, 64, 142
certainty, 49, 50
character escape sequences, 24
comments, 24, 102, 144

multi-line comments, 25
single line comments, 25

CommonMark, 94

Commonwealth Constitution s44 Application, 167
Community Gaming Regulations 2020, 187
Community Gaming Regulations 2020 Application, 187
composite units, 32
conditional operators, 34
constants, 27

boolean, 27
dates, 27
gender, 27
integer, 27
money, 27
number, 27
string, 27
strings, 27
time, 28

consultations, 11
context, 58, 102, 139

declaration, 58
rule and procedure references, 61

CONTEXT keyword, 59
Crimes Act 1900 application, 19
cross-references, 117
currency

currency codes, 33
currency symbols, 33
money. See

cyscript
cross-references, 117
interactive sessions, 118
pretty printer, 115
statistics, 116
translations, 116

cyscript commands, 118
forget, 124
goals, 124
how, 123
load and save, 127
rules, 125
so, 123
verbose, 126
what, 122
whatif, 120
why, 121

cyscript interpreter, 103, 113
flags, 113
goals, 118
questions and prompts, 118
uncertain responses, 120
usage, 113

D
DAEMON qualifier, 72
DataLex, 12

declarations, 146
DEFAULT declaration, 146
LINK declaration, 146

Coding with yscript Index 208

DataLex templating language, 98
DATE type. See dates
dates, 28, 37

comparison, 37
date arithmetic, 37
day/month order, 28
default format, 28
earliest, 28
examples, 28
extracting components, 37
ISO format, 28
latest, 28
shorthand years, 28
today, 28

DAY operator, 36
decision-trees, 78
declarations, 25
declarative programming, 102
DEFAULT. See DataLex
DEFAULT declaration. See DataLex
DEFAULT style declarations, 49
DEFINITE named subjects, 55
descriptors, 23
DETERMINE statement, 67
DIVIDED operator, 36
DO. See WHILE-DO statements
DOCUMENT declaration, 87
documents, 87

LEVEL qualifier, 88
LINE statement, 87
NUMBERED qualifier, 88
PARAGRAPH statement, 87
TEXT statement, 87

E
Electoral Act 1918, 167
embedded facts, 56, 139
EQUALS operator, 35
Error Messages, 127

fatal errors, 137
parsing errors, 127
session errors, 134
verbose messages, 135

escape sequences, 24
EXAMPLE keyword, 81
examples, 11, 81
EXIT statement, 69, 144
EXPLAIN keyword, 56
explanations, 56, 142

default explanation, 56
valued explanations, 56

expressions, 33
BEGIN-END pairs, 34
logical operators, 34
order of precedence, 33
relative operators, 34

F
fact declarations, 41
FACT keyword. See facts, types
fact names, 41

facts, 25
ALIAS declaration, 98
aliases, 58
attachments, 58
boolean, 27
certainty, 49, 50
cross-references, 117
dates, 27
declaration, 41, 45
embedded facts, 56
gender, 27
gramatical errors, 44
INFO declaration, 57
integer, 27
money, 27
named subjects, 17, 53
naming, 41, 42
non-boolean, 45
number, 27
prompts, 43, 52
propositions, 42
ranges, 50
scope, 42
string, 27
styles, 47
SYSTEM qualifier, 41
time, 28
translations, 43, 52
types, 26, 41
unit declaration, 45
units, 45
unknowable, 50
UNREPORTED qualifier, 41

Finders application, 82
forget. See cyscript, forget
FORGET statement, 68, 144
formal description, 23
Formal Grammar, 147
formatting, 24
FORWARD qualifier, 72
free form responses, 35
FROM qualifier, 67
fundamental elements of language, 23

G
GENDER declaration, 54
GENDER-NEUTRAL named subjects, 55
generic rules, 74
giants, 69
GOAL qualifier, 72
goal rules, 72
goals. See cyscript, goals
grammatical errors, 44
GREATER operator, 35
GREATEREQUAL operator, 35

H
Hello, World, 15
history. See yscript, history
honorifics, 55
how. See cyscript, how

Index 209

I
IF-THEN-ELSE statements, 64
IN operator, 35
INCLUDE declaration and statement, 70
INCLUDE directive, 70
INFO declaration, 57
INFORMAL named subjects, 55
INTEGER type, 27
integers, 27
IS keyword, 63
ISO dates, 28
isomorphism, 12, 101

J
Jinja2 templating language, 98
JSON data-serialization format, 157

K
keywords, 15, 23

format, 23
list, 23

L
legislation, 18, 19, 20
LESS operator, 35
LESS THAN operator, 35
LESSEQUAL operator, 35
LEVEL qualifier, 88
LINE statement, 87
LINK declaration. See DataLex
LISTED keyword, 145
Litigation Basics application, 17
load. See cyscript, load
logical operators, 34

M
Markdown, 91, 140
MATCHES operator, 36
metric base-units, 30
MINUS operator, 36
MOD operator, 36
Modern Slavery Act 2018 Application, 171
money, 27
MONEY type, 27
MONTH operator, 36
multi-line comments, 25

N
named subjects, 17, 53, 140

definite, 55
gender, 54
gender-neutral, 55
honorifics, 55
modifiers, 55
name, 54
persons, 54
preferred form of address, 54

related facts, 53
unnamed, 55
unspecified, 54

namespace, 58, 59, 72
natural language, 11, 42, 44
NEXT statement, 67
non-boolean facts

declaration, 45
non-conditional operators, 34
NOT EQUALS operator, 35
NOT operator, 36
now constant, 28
NUMBER type, 27
NUMBERED qualifier, 88

O
objects, 78, 142
operators

arithmetic operators, 35
non-conditional, 34
non-conditional operators, 34
NOT operator, 37
order of precedence, 33
post-unary, 36
pre-unary operators, 36
relative operators, 35
unary operators, 36
UNKNOWN operator, 37

OR operator, 34
OR/WITH operator, 34
ORDER declaration, 74

P
PANNDA, 11, 81, 82

Finders Application, 82
PARAGRAPH statement, 87
Perl, 155

module, 149
PERSON declaration, 53
PERSON-THING declaration, 53
Planet Earth is blue, 135
PLUS operator, 36
post-unary operators, 36
pretty printer, 115
pre-unary operators, 36
procedural programming, 75
PROCEDURE qualifier, 72
procedures, 66, 72
PROMPT declaration, 52
prompts, 52
pronunciation. See yscript, pronunciation
propositional logic, 42
propositions, 42
PROVIDES keyword, 71
Python, 155

R
RaC. See Rules as Code
range

out of range errors, 51

Coding with yscript Index 210

RANGE declaration, 50
continuous, 50
discrete, 50

ranges, 50, 144
continuous, 50
discrete, 50

reals, 27
testing equality, 35

related facts, 53
relative operators, 34, 35
REPEAT-UNTIL statement, 66
reports, 73
Ruby, 156
RULE keyword, 71
rule names, 17
rule order, 74
rules, 71, See cyscript, rules

BACKWARD qualifier, 72
DAEMON qualifier, 72
declaration, 71
default behaviour, 71
documents, 72
FORWARD qualifier, 72
generic rules, 74
goal rules, 72
order, 74
rule names, 17, 72
syntax, 71
types, 72

Rules as Code, 18

S
save. See cyscript, save
SAY statement, 68, 144
sex, 140
simplicity, 101
single line comments, 25
so. See cyscript, so
spaces. See blanks
statements, 63

assignments, 63
CALL, 66
CASE-WHEN, 64, 142
DETERMINE, 67
EXIT, 69
FORGET, 68
IF-THEN-ELSE, 64
INCLUDE, 70
NEXT, 67
REPEAT-UNTIL, 66
SAY, 68
SUBRULE. See CALL
WHILE-DO, 65

statutory interpretation, 20
STRING type, 27
strings, 27

concatenating, 35, 36
fuzzy matching, 35

STYLE declarations, 47
styles

dates, 49
DEFAULT, 49

numerical, 47
time, 48

SUBRULE statement. See CALL statement
syntax, 23, 25

conventions, 41
SYSTEM qualified, 142
SYSTEM qualifier, 41, 66

T
templates, 97, 140
templating languages, 98
TEXT statement, 87
THAN. See GREATER THAN
THEN. See IF-THEN-ELSE statements
THING declaration, 53
time

arithmetic, 38
arithmetic with dates, 38
comparison, 38
now, 28

TIMES operator, 36
TO keyword, 35
today constant, 28
TRANSLATE declarations, 52
translations, 52, 116

default, 52
tutorial introduction, 15
types, 26

dates, 28

U
Umbrella application, 15, 17
unary operators, 36
Unicode, 23, 41, 146
UNIT declaration, 45
units, 29

abbreviations, 31
comparison, 39
composite units, 32
constant values, 30
conversions, 39
derived units, 32
dimensions, 46
elapsed time, 32
fact values, 45
imperial, 31
metric base-units, 30
metric prefixes, 31
SI units, 30
US, 31

UNKNOWN operator, 36, 50
UNLISTED keyword, 145
UNNAMED named subjects, 55
UNREPORTED qualifier, 41, 142
UNTIL keyword, 66

V
variable rules. See Generic Rules
verbose. See cyscript, verbose
verbs, 44

Index 211

auxiliary. See auxiliary verbs
VERBS declaration, 44, 145

W
Warning Messages. See Error Messages
WEEK keyword, 37
what. See cyscript, what
whatif. See cyscript, whatif
WHEN keyword. See CASE-WHEN statement
WHILE-DO statements, 65
why. See cyscript, why

Will generator application, 89, 91

Y
YAML data-serialization format, 157
YEAR operator, 36
yscript

2.x language changes, 139
general-purpose programming language, 66
history, 11
pronunciation, 11

